
Computable Numbers: A Guide
Jack Copeland

Part I The Computer

1. Turing Machines 6

2. Standard Descriptions and Description Numbers 10

3. Subroutines 12

4. The Universal Computing Machine 15

5. Turing, von Neumann, and the Computer 21

6. Turing and Babbage 27

7. Origins of the Term ‘Computer Programme’ 30

Part II Computability and Uncomputability

8. Circular and Circle-Free Machines 32

9. Computable and Uncomputable Sequences 33

10. Computable and Uncomputable Numbers 36

11. The Satisfactoriness Problem 36

12. The Printing and Halting Problems 39

13. The Church-Turing Thesis 40

14. The Entscheidungsproblem 45

‘On Computable Numbers, with an Application to the Entscheidungsproblem’

appeared in the Proceedings of the London Mathematical Society in 1936.1 This,

1 Proceedings of the London Mathematical Society, 42 (1936–7), 230–65. The publication date of ‘On

Computable Numbers’ is sometimes cited, incorrectly, as 1937. The article was published in two parts, both

parts appearing in 1936. The break between the two parts occurred, rather inelegantly, in the middle of

Section 5, at the bottom of p. 240 (p. 67 in the present volume). Pages 230–40 appeared in part 3 of volume

42, issued on 30 Nov. 1936, and the remainder of the article appeared in part 4, issued on 23 Dec. 1936. This

information is given on the title pages of parts 3 and 4 of volume 42, which show the contents of each part

and their dates of issue. (I am grateful to Robert Soare for sending me these pages. See R. I. Soare,

‘Computability and Recursion’, Bulletin of Symbolic Logic, 2 (1996), 284–321.)

The article was published bearing the information ‘Received 28 May, 1936.—Read 12 November, 1936.’

However, Turing was in the United States on 12 November, having left England in September 1936 for what

was to be a stay of almost two years (see the introductions to Chapters 3 and 4). Although papers were read

at the meetings of the London Mathematical Society, many of those published in the Proceedings were ‘taken

as read’, the author not necessarily being present at the meeting in question. Mysteriously, the minutes of the

meeting held on 18 June 1936 list ‘On Computable Numbers, with an Application to the Entscheidungs-

problem’ as one of 22 papers taken as read at that meeting. The minutes of an Annual General Meeting held



Turing’s second publication,2 contains his most signiWcant work. Here he pion-

eered the theory of computation, introducing the famous abstract computing

machines soon dubbed ‘Turing machines’ by the American logician Alonzo

Church.3 ‘On Computable Numbers’ is regarded as the founding publication

of the modern science of computing. It contributed vital ideas to the develop-

ment, in the 1940s, of the electronic stored-programme digital computer. ‘On

Computable Numbers’ is the birthplace of the fundamental principle of the

modern computer, the idea of controlling the machine’s operations by means

of a programme of coded instructions stored in the computer’s memory.

In addition Turing charted areas of mathematics lying beyond the scope of the

Turing machine. He proved that not all precisely stated mathematical problems

can be solved by computing machines. One such is the Entscheidungsproblem or

‘decision problem’. This work—together with contemporaneous work by Church4

—initiated the important branch of mathematical logic that investigates and

codiWes problems ‘too hard’ to be solvable by Turing machine.

In this one article, Turing ushered in both the modern computer and the

mathematical study of the uncomputable.

Part I The Computer

1. Turing Machines

A Turing machine consists of a scanner and a limitless memory-tape that moves

back and forth past the scanner. The tape is divided into squares. Each square

may be blank or may bear a single symbol—‘0’ or ‘1’, for example, or some other

symbol taken from a Wnite alphabet. The scanner is able to examine only one

square of tape at a time (the ‘scanned square’).

The scanner contains mechanisms that enable it to erase the symbol on the

scanned square, to print a symbol on the scanned square, and to move the tape to

the left or right, one square at a time.

In addition to the operations just mentioned, the scanner is able to alter what

Turing calls its ‘m-conWguration’. In modern Turing-machine jargon it is usual to

on 12 Nov. 1936 contain no reference to the paper. (I am grateful to Janet Foster, Archives Consultant to the

London Mathematical Society, for information.)

2 The Wrst was ‘Equivalence of Left and Right Almost Periodicity’, Journal of the London Mathematical

Society, 10 (1935), 284–5.

3 Church introduced the term ‘Turing machine’ in a review of Turing’s paper in the Journal of Symbolic

Logic, 2 (1937), 42–3.

4 A. Church, ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics,

58 (1936), 345–63, and ‘A Note on the Entscheidungsproblem’, Journal of Symbolic Logic, 1 (1936), 40–1.

6 | Jack Copeland



SCANNER

0 0 1 0 0 1

use the term ‘state’ in place of ‘m-conWguration’. A device within the scanner is

capable of adopting a number of diVerent states (m-conWgurations), and the

scanner is able to alter the state of this device whenever necessary. The device

may be conceptualized as consisting of a dial with a (Wnite) number of positions,

labelled ‘a’, ‘b’, ‘c’, etc. Each of these positions counts as an m-conWguration or

state, and changing the m-conWguration or state amounts to shifting the dial’s

pointer from one labelled position to another. This device functions as a simple

memory. As Turing says, ‘by altering its m-conWguration the machine can

eVectively remember some of the symbols which it has ‘‘seen’’ (scanned) previ-

ously’ (p. 59). For example, a dial with two positions can be used to keep a record

of which binary digit, 0 or 1, is present on the square that the scanner has just

vacated. (If a square might also be blank, then a dial with three positions is

required.)

The operations just described—erase, print, move, and change state—are

the basic (or atomic) operations of the Turing machine. Complexity of operation

is achieved by chaining together large numbers of these simple basic actions.

Commercially available computers are hard-wired to perform basic operations

considerably more sophisticated than those of a Turing machine—add, multiply,

decrement, store-at-address, branch, and so forth. The precise list of basic

operations varies from manufacturer to manufacturer. It is a remarkable fact,

however, that despite the austere simplicity of Turing’s machines, they are

capable of computing anything that any computer on the market can compute.

Indeed, because they are abstract machines, with unlimited memory, they are

capable of computations that no actual computer could perform in practice.

Example of a Turing machine

The following simple example is from Section 3 of ‘On Computable Numbers’

(p. 61). The once-fashionable Gothic symbols that Turing used in setting out the

example—and also elsewhere in ‘On Computable Numbers’—are not employed

in this guide. I also avoid typographical conventions used by Turing that seem

likely to hinder understanding (for example, his special symbol ‘@’, which he used

to mark the beginning of the tape, is here replaced by ‘!’).

The machine in Turing’s example—call it M—starts work with a blank tape.

The tape is endless. The problem is to set up the machine so that if the scanner is

Computable Numbers: A Guide | 7



positioned over any square of the tape and the machine set in motion, the scanner

will print alternating binary digits on the tape, 0 1 0 1 0 1 . . . , working to the right

from its starting place, and leaving a blank square in between each digit:

0 01 1

In order to do its work, M makes use of four states or m-conWgurations. These

are labelled ‘a’, ‘b’, ‘c’, and ‘d’. (Turing employed less familiar characters.) M is in

state a when it starts work.

The operations thatM is to perform can be set out by means of a table with four

columns (Table 1). ‘R’ abbreviates the instruction ‘reposition the scanner one

square to the right’. This is achieved by moving the tape one square to the left. ‘L’

abbreviates ‘reposition the scanner one square to the left’, ‘P[0]’ abbreviates ‘print

0 on the scanned square’, and likewise ‘P[1]’. Thus the top line of Table 1 reads: if

you are in state a and the square you are scanning is blank, then print 0 on the

scanned square, move the scanner one square to the right, and go into state b.

A machine acting in accordance with this table of instructions—or pro-

gramme—toils endlessly on, printing the desired sequence of digits while leaving

alternate squares blank.

Turing does not explain how it is to be brought about that the machine acts in

accordance with the instructions. There is no need. Turing’s machines are

abstractions and it is not necessary to propose any speciWc mechanism for

causing the machine to act in accordance with the instructions. However, for

purposes of visualization, one might imagine the scanner to be accompanied by a

bank of switches and plugs resembling an old-fashioned telephone switchboard.

Arranging the plugs and setting the switches in a certain way causes the machine

to act in accordance with the instructions in Table 1. Other ways of setting up the

‘switchboard’ cause the machine to act in accordance with other tables of

instructions. In fact, the earliest electronic digital computers, the British Colossus

(1943) and the American ENIAC (1945), were programmed in very much this

way. Such machines are described as ‘programme-controlled’, in order to distin-

guish them from the modern ‘stored-programme’ computer.

Table 1

State Scanned Square Operations Next State

a blank P[0], R b

b blank R c

c blank P[1], R d

d blank R a

8 | Jack Copeland



As everyone who can operate a personal computer knows, the way to set up a

stored-programme machine to perform some desired task is to open the appro-

priate programme of instructions stored in the computer’s memory. The stored-

programme concept originates with Turing’s universal computing machine,

described in detail in Section 4 of this guide. By inserting diVerent programmes

into the memory of the universal machine, the machine is made to carry out

diVerent computations. Turing’s 1945 technical report ‘Proposed Electronic

Calculator’ was the Wrst relatively complete speciWcation of an electronic

stored-programme digital computer (see Chapter 9).

E-squares and F-squares

After describingM and a second example of a computing machine, involving the

start-of-tape marker ‘!’ (p. 62), Turing introduces a convention which he makes

use of later in the article (p. 63). Since the tape is the machine’s general-purpose

storage medium—serving not only as the vehicle for data storage, input, and

output, but also as ‘scratchpad’ for use during the computation—it is useful to

divide up the tape in some way, so that the squares used as scratchpad are

distinguished from those used for the various other functions just mentioned.

Turing’s convention is that every alternate square of the tape serves as scratch-

pad. These he calls the ‘E-squares’, saying that the ‘symbols on E-squares will be

liable to erasure’ (p. 63). The remaining squares he calls ‘F-squares’. (‘E’ and ‘F’

perhaps stand for ‘erasable’ and ‘Wxed’.)

In the example just given, the ‘F-squares’ of M’s tape are the squares bearing

the desired sequence of binary digits, 0 1 0 1 0 1 . . . In between each pair of

adjacent F-squares lies a blank E-square. The computation in this example is so

simple that the E-squares are never used. More complex computations make

much use of E-squares.

Turing mentions one important use of E-squares at this point (p. 63): any

F-square can be ‘marked’ by writing some special symbol, e.g. ‘*’, on the E-square

immediately to its right. By this means, the scanner is able to Wnd its way back to

a particular string of binary digits—a particular item of data, say. The scanner

locates the Wrst digit of the string by Wnding the marker ‘*’.

Adjacent blank squares

Another useful convention, also introduced on p. 63, is to the eVect that the tape

must never contain a run of non-blank squares followed by two or more adjacent

blank squares that are themselves followed by one or more non-blank squares.

The value of this convention is that it gives the machine an easy way of Wnding

the last non-blank square. As soon as the machine Wnds two adjacent blank

squares, it knows that it has passed beyond the region of tape that has

been written on and has entered the region of blank squares stretching away

endlessly.

Computable Numbers: A Guide | 9



The start-of-tape marker

Turing usually considers tapes that are endless in one direction only. For pur-

poses of visualization, these tapes may all be thought of as being endless to the

right. By convention, each of the Wrst two squares of the tape bears the symbol ‘!’,

mentioned previously. These ‘signposts’ are never erased. The scanner searches

for the signposts when required to Wnd the beginning of the tape.

2. Standard Descriptions and Description Numbers

In the Wnal analysis, a computer programme is simply a (long) stream, or row, of

characters. Combinations of characters encode the instructions. In Section 5 of

‘On Computable Numbers’ Turing explains how an instruction table is to be

converted into a row of letters, which he calls a ‘standard description’. He then

explains how a standard description can be converted into a single number. He

calls these ‘description numbers’.

Each line of an instruction table can be re-expressed as a single ‘word’ of the

form qiSjSkMql : qi is the state shown in the left-hand column of the table. Sj is

the symbol on the scanned square (a blank is counted as a type of symbol). Sk is

the symbol that is to be printed on the scanned square. M is the direction of

movement (if any) of the scanner, left or right. ql is the next state. For example,

the Wrst line of Table 1 can be written: a-0Rb (using ‘-’ to represent a blank). The

third line is: c-1Rd.

The second line of the table, which does not require the contents of the

scanned square (a blank) to be changed, is written: b--Rc. That is to say we

imagine, for the purposes of this new notation, that the operations column of the

instruction table contains the redundant instruction P[-]. This device is

employed whenever an instruction calls for no change to the contents of the

scanned square, as in the following example:

State Scanned Square Operations Next State

d x L c

It is imagined that the operations column contains the redundant instruction

P[x], enabling the line to be expressed: dxxLc.

Sometimes a line may contain no instruction to move. For example:

State Scanned Square Operations Next State

d * P[1] c

The absence of a move is indicated by including ‘N’ in the instruction-word:

d*1Nc.

Sometimes a line may contain an instruction to erase the symbol on the

scanned square. This is denoted by the presence of ‘E’ in the ‘operations’ column:

10 | Jack Copeland



State Scanned Square Operations Next State

m * E, R n

Turing notes that E is equivalent to P[-]. The corresponding instruction-word is

therefore m*-Rn.

Any table of instructions can be rewritten in the form of a stream of instruc-

tion-words separated by semicolons.5 Corresponding to Table 1 is the stream:

a-0Rb; b--Rc; c-1Rd; d--Ra;

This stream can be converted into a stream consisting uniformly of the letters

A, C, D, L, R, and N (and the semicolon). Turing calls this a standard description

of the machine in question. The process of conversion is done in such a way that

the individual instructions can be retrieved from the standard description.

The standard description is obtained as follows. First, ‘-’ is replaced by ‘D’, ‘0’

by ‘DC’, and ‘1’ by ‘DCC’. (In general, if we envisage an ordering of all the

printable symbols, the nth symbol in the ordering is replaced by a ‘D’ followed by

n repetitions of ‘C’.) This produces:

aDDCRb; bDDRc; cDDCCRd; dDDRa;

Next, the lower case state-symbols are replaced by letters. ‘a’ is replaced by ‘DA’,

‘b’ by ‘DAA’, ‘c’ by ‘DAAA’, and so on. An obvious advantage of the new notation is

that there is no limit to the number of states that can be named in this way.

The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

Notice that occurrences of ‘D’ serve to mark out the diVerent segments or

regions of each instruction-word. For example, to determine which symbol an

instruction-word says to print, Wnd the third ‘D’ to the right from the beginning

of the word, and count the number of occurrences of ‘C’ between it and the next

D to the right.

The standard description can be converted into a number, called a description

number. Again, the process of conversion is carried out in such a way that the

individual instructions can be retrieved from the description number. A standard

description is converted into a description number by means of replacing each ‘A’

by ‘1’, ‘C’ by ‘2’, ‘D’ by ‘3’, ‘L’ by ‘4’, ‘R’ by ‘5’, ‘N’ by ‘6’, and ‘;’ by 7. In the case of

the above example this produces:

31332531173113353111731113322531111731111335317.6

5 There is a subtle issue concerning the placement of the semicolons. See Davies’s ‘Corrections to Turing’s

Universal Computing Machine’, Sections 3, 7, 10.

6 Properly speaking, the description number is not the string ‘313325311731133531117311133225

31111731111335317’, but is the number denoted by this string of numerals.

Computable Numbers: A Guide | 11



Occurrences of ‘7’ mark out the individual instruction-words, and occurrences

of ‘3’mark out the diVerent regions of the instruction-words. For example: to Wnd

out which symbol the third instruction-word says to print, Wnd the second ‘7’

(starting from the left), then the third ‘3’ to the right of that ‘7’, and count the

numberofoccurrencesof ‘2’ between that ‘3’ and thenext ‘3’ to the right.ToWndout

the exit state speciWed by the third instruction-word, Wnd the last ‘3’ in that word

and count the number of occurrences of ‘1’ between it and the next ‘7’ to the right.

Notice that diVerent standard descriptions can describe the behaviour of one

and the same machine. For example, interchanging the Wrst and second lines of

Table 1 does not in any way aVect the behaviour of the machine operating in

accordance with the table, but a diVerent standard description—and therefore a

diVerent description number—will ensue if the table is modiWed in this way.

This process of converting a table of instructions into a standard description

or a description number is analogous to the process of compiling a computer

programme into ‘machine code’. Programmers generally prefer to work in so-

called high-level languages, such as Pascal, Prolog, and C. Programmes written in

a high-level language are, like Table 1, reasonably easy for a trained human being

to follow. Before a programme can be executed, the instructions must be

translated, or compiled, into the form required by the computer (machine code).

The importance of standard descriptions and description numbers is ex-

plained in what follows.

3. Subroutines

Subroutines are programmes that are used as components of other programmes.

A subroutine may itself have subroutines as components. Programmers usually

have access to a ‘library’ of commonly used subroutines—the programmer takes

ready-made subroutines ‘oV the shelf ’ whenever necessary.

Turing’s term for a subroutine was ‘subsidiary table’. He emphasized the

importance of subroutines in a lecture given in 1947 concerning the Automatic

Computing Engine or ACE, the electronic stored-programme computer that he

began designing in 1945 (see Chapter 9 and the introduction to Chapter 10):

Probably the most important idea involved in instruction tables is that of standard

subsidiary tables. Certain processes are used repeatedly in all sorts of diVerent connections,

and we wish to use the same instructions . . . every time . . .We have only to think out how

[a process] is to be done once, and forget then how it is done.7

In ‘On Computable Numbers’—eVectively the Wrst programming manual of

the computer age—Turing introduced a library of subroutines for Turing ma-

chines (in Sections 4 and 7), saying (p. 63):

7 The quotation is from p. 389 below.

12 | Jack Copeland



There are certain types of process used by nearly all machines, and these, in some

machines, are used in many connections. These processes include copying down se-

quences of symbols, comparing sequences, erasing all symbols of a given form, etc.

Some examples of subroutines are:

cpe(A, B, x, y) (p. 66):

‘cpe’ may be read ‘compare for equality’. This subroutine compares the string of

symbols marked with an x to the string of symbols marked with a y. The subrou-

tine places the machine in state B if the two strings are the same, and in state A if

they are diVerent. Note: throughout these examples, ‘A’ and ‘B’ are variables

representing any states; ‘x’ and ‘y’ are variables representing any symbols.

f(A, B, x) (p. 63):

‘f ’ stands for ‘Wnd’. This subroutine Wnds the leftmost occurrence of x. f(A, B,

x) moves the scanner left until the start of the tape is encountered. Then the

scanner is moved to the right, looking for the Wrst x. As soon as an x is found,

the subroutine places the machine in state A, leaving the scanner resting on the

x. If no x is found anywhere on the portion of tape that has so far been written

on, the subroutine places the machine in state B, leaving the scanner resting on

a blank square to the right of the used portion of the tape.

e(A, B, x) (p. 64):

‘e’ stands for ‘erase’. The subroutine e(A, B, x) contains the subroutine f(A,

B, x). e(A, B, x) Wnds the leftmost occurrence of symbol x and erases it, placing

the machine in stateA and leaving the scanner resting on the square that has just

been erased. If no x is found the subroutine places themachine in state B, leaving

the scanner resting on a blank square to the right of the used portion of the tape.

The subroutine f(A, B, x)

It is a useful exercise to construct f(A, B, x) explicitly, i.e. in the form of a table of

instructions. Suppose we wish the machine to enter the subroutine f(A, B, x) when

placed in state n, say. Then the table of instructions is as shown in Table 2.

(Remember that by the convention mentioned earlier, if ever the scanner encoun-

ters twoadjacentblank squares, it has passedbeyond the regionof tape that has been

written on andhas entered the region of blank squares stretching away to the right.)

As Turing explains, f(A, B, x) is in eVect built out of two further subroutines,

which he writes f1(A, B, x) and f2(A, B, x). The three rows of Table 2 with an ‘m’

in the Wrst column form the subroutine f1(A, B, x), and the three rows with ‘o’ in

the Wrst column form f2(A, B, x).

Skeleton tables

For ease of deWning subroutines Turing introduces an abbreviated form of

instruction table, in which one is allowed to write expressions referring to

Computable Numbers: A Guide | 13



Table 2

State

Scanned

Square Operations

Next

State Comments

n does not contain ! L n Search for the Wrst square.

n ! L m Found right-hand member

of the pair ‘!!’; move left to

Wrst square of tape; go into

state m. (Notice that x might

be ‘!’.)

m x none A Found x ; go into state A;

subroutine ends.

m neither x nor

blank

R m Keep moving right looking

for x or a blank.

m blank R o Blank square encountered;

go into state o and examine

next square to the right.

o x none A Found x ; go into state A;

subroutine ends.

o neither x nor

blank

R m Found a blank followed by a

non-blank square but no x ;

switch to state m and keep

looking for x.

o blank R B Two adjacent blank squares

encountered; go into state B;

subroutine ends.

Table 3

f(A, B, x)
not ! L f(A, B, x)

! L f1(A, B, x)

�

f1(A, B, x)

x A

neither x nor blank R f1(A, B, x)

blank R f2(A, B, x)

(

f2(A, B, x)
x A

neither x nor blank R f1(A, B, x)

blank R B

(

subroutines in the Wrst and fourth columns (the state columns). Turing calls

these abbreviated tables ‘skeleton tables’ (p. 63). For example, the skeleton table

corresponding to Table 2 is as in Table 3.

Turing’s notation for subroutines is explained further in the appendix to this

guide (‘Subroutines and m-functions’).

14 | Jack Copeland



4. The Universal Computing Machine

In Section 7 of ‘On Computable Numbers’ Turing introduces his ‘universal

computing machine’, now known simply as the universal Turing machine. The

universal Turing machine is the stored-programme digital computer in abstract

conceptual form.

The universal computing machine has a single, Wxed table of instructions

(which we may imagine to have been set into the machine, once and for all, by

way of the switchboard-like arrangement mentioned earlier). Operating in ac-

cordance with this table of instructions, the universal machine is able to carry out

any task for which an instruction table can be written. The trick is to put an

instruction table—programme—for carrying out the desired task onto the tape

of the universal machine.

The instructions are placed on the tape in the form of a standard descrip-

tion—i.e. in the form of a string of letters that encodes the instruction table. The

universal machine reads the instructions and carries them out on its tape.

The universal Turing machine and the modern computer

Turing’s greatest contributions to the development of the modern computer

were:

• The idea of controlling the function of a computing machine by storing a

programme of symbolically encoded instructions in the machine’s memory.

• His demonstration (in Section 7 of ‘On Computable Numbers’) that, by this

means, a single machine of Wxed structure is able to carry out every compu-

tation that can be carried out by any Turing machine whatsoever, i.e. is

universal.

Turing’s teacher and friend Max Newman has testiWed that Turing’s interest in

building a stored-programme computing machine dates from the time of ‘On

Computable Numbers’. In a tape-recorded interview Newman stated, ‘Turing

himself, right from the start, said it would be interesting to try and make such a

machine’.8 (It was Newman who, in a lecture on the foundations of mathematics

and logic given in Cambridge in 1935, launched Turing on the research that led

to the universal Turing machine; see the introduction to Chapter 4.9) In his

obituary of Turing, Newman wrote:

The description that [Turing] gave of a ‘universal’ computing machine was entirely

theoretical in purpose, but Turing’s strong interest in all kinds of practical experiment

8 Newman in interview with Christopher Evans (‘The Pioneers of Computing: An Oral History of

Computing’, London, Science Museum).

9 Ibid.

Computable Numbers: A Guide | 15



made him even then interested in the possibility of actually constructing a machine on

these lines.10

Turing laterdescribed the connectionbetween theuniversal computingmachine

and the stored-programme digital computer in the following way (Chapter 9,

pp. 378 and 383):

Some years ago I was researching onwhat might now be described as an investigation of the

theoretical possibilities and limitations of digital computingmachines. I considered a type of

machine which had a central mechanism, and an inWnite memory which was contained on

an inWnite tape . . . It can be shown that a single special machine of that type can be made to

do theworkof all . . . The specialmachinemaybe called the universalmachine; itworks in the

following quite simple manner.Whenwe have decided what machine we wish to imitate we

punch adescriptionof it on the tapeof theuniversalmachine. This description explainswhat

the machine would do in every conWguration in which it might Wnd itself. The universal

machine has only to keep looking at this description in order to Wnd out what it should do at

each stage. Thus the complexity of themachine to be imitated is concentrated in the tape and

does not appear in the universal machine proper in any way . . . [D]igital computing ma-

chines such as the ACE . . . are in fact practical versions of the universal machine. There is a

certain central pool of electronic equipment, and a large memory. When any particular

problem has to be handled the appropriate instructions for the computing process involved

are stored in the memory of the ACE and it is then ‘set up’ for carrying out that process.

Turing’s idea of a universal stored-programme computing machine was pro-

mulgated in the USA by von Neumann and in the UK by Newman, the two

mathematicians who, along with Turing himself, were by and large responsible

for placing Turing’s abstract universal machine into the hands of electronic

engineers.

By 1946 several groups in both countries had embarked on creating a universal

Turingmachine in hardware. The race to get the Wrst electronic stored-programme

computer up and running was won byManchester University where, in Newman’s

Computing Machine Laboratory, the ‘Manchester Baby’ ran its Wrst programme

on 21 June 1948. Soon after, Turing designed the input/output facilities and the

programming system of an expandedmachine known as theManchesterMark I.11

(There is more information about the Manchester computer in the introductions

to Chapters 4, 9, and 10, and in ‘ArtiWcial Life’.) A small pilot version of Turing’s

Automatic Computing Engine Wrst ran in 1950, at the National Physical Labora-

tory in London (see the introductions to Chapters 9 and 10).

10 ‘Dr. A. M. Turing’, The Times, 16 June 1954, p. 10.

11 F. C. Williams described some of Turing’s contributions to the Manchester machine in a letter written

in 1972 to Brian Randell (parts of which are quoted in B. Randell, ‘On Alan Turing and the Origins of

Digital Computers’, in B. Meltzer and D. Michie (eds.), Machine Intelligence 7 (Edinburgh: Edinburgh

University Press, 1972) ); see the introduction to Chapter 9 below. A digital facsimile of Turing’s Program-

mers’ Handbook for Manchester Electronic Computer (University of Manchester Computing Machine

Laboratory, 1950) is in The Turing Archive for the History of Computing <www.AlanTuring.net/

programmers_handbook>.

16 | Jack Copeland

www.AlanTuring.net/programmers_handbook
www.AlanTuring.net/programmers_handbook


By 1951 electronic stored-programme computers had begun to arrive in the

market place. The Wrst model to go on sale was the Ferranti Mark I, the

production version of the Manchester Mark I (built by the Manchester Wrm

Ferranti Ltd.). Nine of the Ferranti machines were sold, in Britain, Canada, the

Netherlands, and Italy, the Wrst being installed at Manchester University in

February 1951.12 In the United States the Wrst UNIVAC (built by the Eckert-

Mauchly Computer Corporation) was installed later the same year. The LEO

computer also made its debut in 1951. LEO was a commercial version of the

prototype EDSAC machine, which at Cambridge University in 1949 had become

the second stored-programme electronic computer to function.13 1953 saw the

IBM 701, the company’s Wrst mass-produced stored-programme electronic com-

puter. A new era had begun.

How the universal machine works

The details of Turing’s universal machine, given on pp. 69–72, are moderately

complicated. However, the basic principles of the universal machine are, as

Turing says, simple.

Let us consider the Turing machineM whose instructions are set out in Table 1.

(Recall that M’s scanner is positioned initially over any square of M’s endless

tape, the tape being completely blank.) If a standard description of M is placed

on the universal machine’s tape, the universal machine will simulate or mimic the

actions of M, and will produce, on specially marked squares of its tape, the

output sequence that M produces, namely:

0 1 0 1 0 1 0 1 0 1 . . .

The universal machine does this by reading the instructions that the standard

description contains and carrying them out on its own tape.

In order to start work, the universal machine requires on its tape not only the

standard description but also a record of M’s intial state (a) and the symbol that

M is initially scanning (a blank). The universal machine’s own tape is initially

blank except for this record and M’s standard description (and some ancillary

punctuation symbols mentioned below). As the simulation of M progresses, the

universal machine prints a record on its tape of:

• the symbols that M prints

• the position of M’s scanner at each step of the computation

• the symbol ‘in’ the scanner

• M’s state at each step of the computation.

12 S. Lavington, ‘Computer Development at Manchester University’, in N. Metropolis, J. Howlett, and

G. C. Rota (eds.), A History of Computing in the Twentieth Century (New York: Academic Press, 1980).

13 See M. V. Wilkes, Memoirs of a Computer Pioneer (Cambridge, Mass.: MIT Press, 1985).

Computable Numbers: A Guide | 17



When the universal machine is started up, it reads from its tape M’s initial

state and initial symbol, and then searches through M’s standard description for

the instruction beginning: ‘when in state a and scanning a blank . . .’ The relevant

instruction from Table 1 is:

a blank P[0], R b

The universal machine accordingly prints ‘0’. It then creates a record on its tape

of M’s new state, b, and the new position of M’s scanner (i.e. immediately to the

right of the ‘0’ that has just been printed on M’s otherwise blank tape). Next, the

universal machine searches through the standard description for the instruction

beginning ‘when in state b and scanning a blank . . .’. And so on.

How does the universal machine do its record-keeping? After M executes its

Wrst instruction, the relevant portion of M’s tape would look like this—using ‘b’

both to recordM’s state and to indicate the position of the scanner. All the other

squares of M’s tape to the left and right are blank.

0

b

The universal machine keeps a record of this state of aVairs by employing three

squares of tape (pp. 62, 68):

0 b

The symbol ‘b’ has the double function of recording M’s state and indicating the

position of M’s scanner. The square immediately to the right of the state-symbol

displays the symbol ‘in’ M’s scanner (a blank).

What does the universal machine’s tape look like before the computation

starts? The standard description corresponding to Table 1 is:

DADDCRDAA; DAADDRDAAA; DAAADDCCRDAAAA; DAAAADDRDA;

The operator places this programme on the universal machine’s tape, writing

only on F-squares and beginning on the second F-square of the tape. The Wrst

F-square and the Wrst E-square are marked with the start-of-tape symbol ‘!’. The

E-squares (shaded in the diagram) remain blank (except for the Wrst).

! ! D D D D DC RA A A A A; etc.

On the F-square following the Wnal semicolon of the programme, the operator

writes the end-of-programme symbol ‘::’. On the next F-square to the right of

this symbol, the operator places a record of M’s initial state, a, and leaves the

18 | Jack Copeland



following F-square blank in order to indicate that M is initially scanning a blank.

The next F-square to the right is then marked with the punctuation symbol ‘:’.

This completes the setting-up of the tape:

! ! p r r a m m eo g :a::

What does the universalmachine’s tape look like as the computation progresses?

In response to the Wrst instruction in the standard description, the universal

machine creates the record ‘0b-:’ (in describing the tape, ‘-’ will be used to represent

a blank) on the next four F-squares to the right of the Wrst ‘:’. Depicting only the

portion of tape to the right of the end-of-programmemarker ‘::’ (and ignoring any

symbols which the universal machine may have written on the E-squares in the

course of dealing with the Wrst instruction), the tape now looks like this:

0a b::: :

Next the universal machine searches for the instruction beginning ‘when in

state b and scanning a blank . . .’. The relevant instruction from Table 1 is

b blank R c

This instruction would put M into the condition:

0

c

So the universal machine creates the record ‘0-c-:’ on its tape:

:: : ::0 b 0 ca

Each pair of punctuation marks frames a representation (on the F-squares)

of M’s tape extending from the square that was in the scanner at start-up to the

furthest square to the right to have been scanned at that stage of the computation.

The next instruction is:

c blank P[1], R d

This causes the universal machine to create the record ‘0-1d-:’. (The diagram

represents a single continuous strip of tape.)

:: : : 0c

:

:0 b 0

d

a

1

Computable Numbers: A Guide | 19



And so on. Record by record, the outputs produced by the instructions in Table 1

appear on the universal machine’s tape.

Turing also introduces a variation on this method of record-keeping, whereby

the universal machine additionally prints on the tape a second record of the

binary digits printed by M. The universal machine does this by printing in front

of each record shown in the above diagram a record of any digit newly printed by

M (plus an extra colon):

a : : :

: : :1 1 d0

0 0 0 cb::

These single digits bookended by colons form a representation of what has been

printed by M on the F-squares of its tape.

Notice that the record-keeping scheme employed so far requires the universal

machine to be able to print each type of symbol that the machine being

simulated is able to print. In the case of M this requirement is modest, since

M prints only ‘0’, ‘1’, and the blank. However, if the universal machine is to be

able to simulate each of the inWnitely many Turing machines, then this record-

keeping scheme requires that the universal machine have the capacity to print an

endless variety of types of discrete symbol. This can be avoided by allowing the

universal machine to keep its record ofM’s tape in the same notation that is used

in forming standard descriptions, namely with ‘D’ replacing the blank, ‘DC’

replacing ‘0’, ‘DCC’ replacing ‘1’, ‘DA’ replacing ‘a’, ‘DAA’ replacing ‘b’, and so on.

The universal machine’s tape then looks like this (to the right of the end-of-

programme symbol ‘::’ and not including the second record of digits printed

by M):

D D : D D D D DC:A ACA etc::

In this elegant notation of Turing’s, ‘D’ serves to indicate the start of each new

term on the universal machine’s tape. The letters ‘A’ and ‘C’ serve to distinguish

terms representing M’s states from terms representing symbols on M’s tape.

The E-squares and the instruction table

The universal machine uses the E-squares of its tape to mark up each instruction

in the standard description. This facilitates the copying that the universal

machine must do in order to produce its records of M’s activity. For example,

the machine temporarily marks the portion of the current instruction specifying

M’s next state with ‘y’ and subsequently the material marked ‘y’ is copied to the

appropriate place in the record that is being created. The universal machine’s

records of M’s tape are also temporarily marked in various ways.

20 | Jack Copeland



In Section 7 Turing introduces various subroutines for placing and erasing

markers on the E-squares. He sets out the table of instructions for the universal

machine in terms of these subroutines. The table contains the detailed instruc-

tions for carrying out the record-keeping described above.

In Section 2.4 of Chapter 2 Turing’s sometime colleague Donald Davies gives

an introduction to these subroutines and to Turing’s detailed table of instruc-

tions for the universal machine (and additionally corrects some errors in Turing’s

own formulation).

5. Turing, von Neumann, and the Computer

In the years immediately following the Second World War, the Hungarian-

American logician and mathematician John von Neumann—one of the most

important and inXuential Wgures of twentieth-century mathematics—made the

concept of the stored-programme digital computer widely known, through his

writings and his charismatic public addresses. In the secondary literature, von

Neumann is often said to have himself invented the stored-programme com-

puter. This is an unfortunate myth.

From 1933 von Neumann was on the faculty of the prestigious Institute for

Advanced Study at Princeton University. He and Turing became well acquainted

while Turing was studying at Princeton from 1936 to 1938 (see the introduction

to Chapter 3). In 1938 von Neumann oVered Turing a position as his assistant,

which Turing declined. (Turing wrote to his mother on 17 May 1938: ‘I had

an oVer of a job here as von Neumann’s assistant at $1500 a year but decided

not to take it.’14 His father had advised him to Wnd a job in America,15 but on

12 April of the same year Turing had written: ‘I have just been to see the Dean

[Luther Eisenhart] and ask him about possible jobs over here; mostly for Daddy’s

information, as I think it unlikely I shall take one unless you are actually at

war before July. He didn’t know of one at present, but said he would bear it

all in mind.’)

It was during Turing’s time at Princeton that von Neumann became familiar

with the ideas in ‘On Computable Numbers’. He was to become intrigued with

Turing’s concept of a universal computing machine.16 It is clear that von

14 Turing’s letters to his mother are among the Turing Papers in the Modern Archive Centre, King’s

College Library, Cambridge (catalogue reference K 1).

15 S. Turing, Alan M. Turing (Cambridge: HeVer, 1959), 55.

16 ‘I know that von Neumann was inXuenced by Turing . . . during his Princeton stay before the war,’ said

von Neumann’s friend and colleague Stanislaw Ulam (in an interview with Christopher Evans in 1976; ‘The

Pioneers of Computing: An Oral History of Computing’, Science Museum, London). When Ulam and von

Neumann were touring in Europe during the summer of 1938, von Neumann devised a mathematical game

involving Turing-machine-like descriptions of numbers (Ulam reported by W. Aspray on pp. 178, 313 of his

John von Neumann and the Origins of Modern Computing (Cambridge, Mass.: MIT Press, 1990) ). The word

Computable Numbers: A Guide | 21



Neumann held Turing’s work in the highest regard.17 One measure of his esteem

is that the only names to receive mention in his pioneering volume The Com-

puter and the Brain are those of Turing and the renowned originator of infor-

mation theory, Claude Shannon.18

The Los Alamos physicist Stanley Frankel—responsible with von Neumann

and others for mechanizing the large-scale calculations involved in the design of

the atomic and hydrogen bombs—has recorded von Neumann’s view of the

importance of ‘On Computable Numbers’:

I know that in or about 1943 or ’44 von Neumann was well aware of the fundamental

importance of Turing’s paper of 1936 ‘On computable numbers . . .’, which describes in

principle the ‘Universal Computer’ of which every modern computer (perhaps not

ENIAC as Wrst completed but certainly all later ones) is a realization. Von Neumann

introduced me to that paper and at his urging I studied it with care. Many people have

acclaimed von Neumann as the ‘father of the computer’ (in a modern sense of the term)

but I am sure that he would never have made that mistake himself. He might well be called

the midwife, perhaps, but he Wrmly emphasized to me, and to others I am sure, that the

fundamental conception is owing to Turing—insofar as not anticipated by Babbage,

Lovelace, and others. In my view von Neumann’s essential role was in making the world

aware of these fundamental concepts introduced by Turing and of the development work

carried out in the Moore school and elsewhere.19

In 1944 von Neumann joined the ENIAC group, led by Presper Eckert and

John Mauchly at the Moore School of Electrical Engineering (part of the Univer-

sity of Pennsylvania).20 At this time von Neumann was involved in the Manhat-

tan Project at Los Alamos, where roomfuls of clerks armed with desk calculating

machines were struggling to carry out the massive calculations required by the

physicists. Hearing about the Moore School’s planned computer during a chance

encounter on a railway station (with Herman Goldstine), von Neumann imme-

diately saw to it that he was appointed as consultant to the project.21 ENIAC—

under construction since 1943—was, as previously mentioned, a programme-

controlled (i.e. not stored-programme) computer: programming consisted of

‘intrigued’ is used in this connection by von Neumann’s colleague Herman Goldstine on p. 275 of his The

Computer from Pascal to von Neumann (Princeton: Princeton University Press, 1972).)

17 Turing’s universal machine was crucial to von Neumann’s construction of a self-reproducing automa-

ton; see the chapter ‘ArtiWcial Life’, below.

18 J. von Neumann, The Computer and the Brain (New Haven: Yale University Press, 1958).

19 Letter from Frankel to Brain Randell, 1972 (Wrst published in B. Randell, ‘On Alan Turing and the

Origins of Digital Computers’, in Meltzer and Michie (eds.), Machine Intelligence 7. I am grateful to Randell

for giving me a copy of this letter.

20 John Mauchly recalled that 7 September 1944 ‘was the Wrst day that von Neumann had security

clearance to see the ENIAC and talk with Eckert and me’ (J. Mauchly, ‘Amending the ENIAC Story’,

Datamation, 25/11 (1979), 217–20 (217) ). Goldstine (The Computer from Pascal to von Neumann, 185)

suggests that the date of von Neumann’s Wrst visit may have been a month earlier: ‘I probably took von

Neumann for a Wrst visit to the ENIAC on or about 7 August’.

21 Goldstine, The Computer from Pascal to von Neumann, 182.

22 | Jack Copeland



rerouting cables and setting switches. Moreover, the ENIAC was designed with

only one very speciWc type of task in mind, the calculation of trajectories of

artillery shells. Von Neumann brought his knowledge of ‘On Computable

Numbers’ to the practical arena of the Moore School. Thanks to Turing’s abstract

logical work, von Neumann knew that by making use of coded instructions

stored in memory, a single machine of Wxed structure could in principle carry

out any task for which an instruction table can be written.

Von Neumann gave his engineers ‘On Computable Numbers’ to read when, in

1946, he established his own project to build a stored-programme computer at

the Institute for Advanced Study.22 Julian Bigelow, von Neumann’s chief engin-

eer, recollected:

The person who really . . . pushed the whole Weld ahead was von Neumann, because he

understood logically what [the stored-programme concept] meant in a deeper way than

anybody else . . . The reason he understood it is because, among other things, he under-

stood a good deal of the mathematical logic which was implied by the idea, due to the

work of A. M. Turing . . . in 1936–1937. . . . Turing’s [universal] machine does not sound

much like a modern computer today, but nevertheless it was. It was the germinal

idea . . . So . . . [von Neumann] saw . . . that [ENIAC] was just the Wrst step, and that great

improvement would come.23

Von Neumann repeatedly emphasized the fundamental importance of ‘On

Computable Numbers’ in lectures and in correspondence. In 1946 von Neumann

wrote to the mathematician Norbert Wiener of ‘the great positive contribution of

Turing’, Turing’s mathematical demonstration that ‘one, deWnite mechanism can

be ‘‘universal’’ ’.24 In 1948, in a lecture entitled ‘The General and Logical Theory

of Automata’, von Neumann said:

The English logician, Turing, about twelve years ago attacked the following problem. He

wanted to give a general deWnition of what is meant by a computing automaton . . . Turing

carried out a careful analysis of what mathematical processes can be eVected by automata

of this type . . . He . . . also introduce[d] and analyse[d] the concept of a ‘universal auto-

maton’. . . An automaton is ‘universal’ if any sequence that can be produced by any

automaton at all can also be solved by this particular automaton. It will, of course, require

in general a diVerent instruction for this purpose. The Main Result of the Turing Theory.

We might expect a priori that this is impossible. How can there be an automaton which is

22 Letter from Julian Bigelow to Copeland (12 Apr. 2002). See also Aspray, John von Neumann, 178.

23 Bigelow in a tape-recorded interview made in 1971 by the Smithsonian Institution and released in

2002. I am grateful to Bigelow for sending me a transcript of excerpts from the interview.

24 The letter, dated 29 Nov. 1946, is in the von Neumann Archive at the Library of Congress, Washington,

DC. In the letter von Neumann also remarked that Turing had ‘demonstrated in absolute . . . generality that

anything and everything Brouwerian can be done by an appropriate mechanism’ (a Turing machine). He

made a related remark in a lecture: ‘It has been pointed out by A. M. Turing [in ‘‘On Computable

Numbers’’] . . . that eVectively constructive logics, that is, intuitionistic logics, can be best studied in terms

of automata’ (‘Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’,

in vol. v of von Neumann’s Collected Works, ed. A. H. Taub (Oxford: Pergamon Press, 1963), 329).

Computable Numbers: A Guide | 23



at least as eVective as any conceivable automaton, including, for example, one of twice its

size and complexity? Turing, nevertheless, proved that this is possible.25

The following year, in a lecture delivered at the University of Illinois entitled

‘Rigorous Theories of Control and Information’, von Neumann said:

The importance of Turing’s research is just this: that if you construct an automaton right,

then any additional requirements about the automaton can be handled by suYciently

elaborate instructions. This is only true if [the automaton] is suYciently complicated, if it

has reached a certain minimal level of complexity. In other words . . . there is a very

deWnite Wnite point where an automaton of this complexity can, when given suitable

instructions, do anything that can be done by automata at all.26

Von Neumann placed Turing’s abstract ‘universal automaton’ into the hands of

American engineers. Yet many books on the history of computing in the United

States make no mention of Turing. No doubt this is in part explained by the

absence of any explicit reference to Turing’s work in the series of technical reports

in which von Neumann, with various co-authors, set out a logical design for an

electronic stored-programme digital computer.27Nevertheless there is evidence in

these documents of von Neumann’s knowledge of ‘On Computable Numbers’. For

example, in the report entitled ‘Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument’ (1946), von Neumann and his co-authors,

Burks andGoldstine—both formermembers of the ENIAC group, who had joined

von Neumann at the Institute for Advanced Study—wrote the following:

3.0. First Remarks on the Control and Code: It is easy to see by formal-logical methods, that

there exist codes that are in abstracto adequate to control and cause the execution of any

sequence of operations which are individually available in the machine and which are, in

their entirety, conceivable by the problem planner. The really decisive considerations from

the present point of view, in selecting a code, are more of a practical nature: Simplicity of

the equipment demanded by the code, and the clarity of its application to the actually

important problems together with the speed of its handling of those problems.28

Burks has conWrmed that the Wrst sentence of this passage is a reference to

Turing’s universal computing machine.29

25 The text of ‘The General and Logical Theory of Automata’ is in vol. v of von Neumann, Collected

Works; see pp. 313–14.

26 The text of ‘Rigorous Theories of Control and Information’ is printed in J. von Neumann, Theory of

Self-Reproducing Automata, ed. A. W. Burks (Urbana: University of Illinois Press, 1966); see p. 50.

27 The Wrst papers in the series were the ‘First Draft of a Report on the EDVAC’ (1945, von Neumann; see

n. 31), and ‘Preliminary Discussion of the Logical Design of an Electronic Computing Instrument’ (1946,

Burks, Goldstine, von Neumann; see n. 28).

28 A. W. Burks, H. H. Goldstine, and J. von Neumann, ‘Preliminary Discussion of the Logical Design of

an Electronic Computing Instrument’, 28 June 1946, Institute for Advanced Study, Princeton University,

Section 3.1 (p. 37); reprinted in vol. v of von Neumann, Collected Works.

29 Letter from Burks to Copeland (22 Apr. 1998). See also Goldstine, The Computer from Pascal to von

Neumann, 258.

24 | Jack Copeland



The situation in 1945–1946

The passage just quoted is an excellent summary of the situation at that time. In

‘On Computable Numbers’ Turing had shown in abstracto that, by means of

instructions expressed in the programming code of standard descriptions, a

single machine of Wxed structure is able to carry out any task that a ‘problem

planner’ is able to analyse into eVective steps. By 1945, considerations in

abstracto had given way to the practical problem of devising an equivalent

programming code that could be implemented eYciently by means of thermi-

onic valves (vacuum tubes).

A machine-level programming code in eVect speciWes the basic opera-

tions that are available in the machine. In the case of Turing’s universal machine

these are move left one square, scan one symbol, write one symbol, and so

on. These operations are altogether too laborious to form the basis of eYcient

electronic computation. A practical programming code should not only

be universal, in the sense of being adequate in principle for the program-

ming of any task that can be carried out by a Turing machine, but must in

addition:

• employ basic operations that can be realized simply, reliably, and eYciently

by electronic means;

• enable the ‘actually important problems’ to be solved on the machine as

rapidly as the electronic hardware permits;

• be as easy as possible for the human ‘problem planner’ to work with.

The challenge of designing a practical code, and the underlying mechanism

required for its implementation, was tackled in diVerent ways by Turing and the

several American groups.

Events at the Moore School

The ‘Preliminary Discussion of the Logical Design of an Electronic Computing

Instrument’ was not intended for formal publication and no attempt was made

to indicate those places where reference was being made to the work of others.

(Von Neumann’s biographer Norman Macrae remarked: ‘Johnny borrowed (we

must not say plagiarized) anything from anybody.’30 The situation was the same

in the case of von Neumann’s 1945 paper ‘First Draft of a Report on the

EDVAC’.31 This described the Moore School group’s proposed stored-

programme computer, the EDVAC. The ‘First Draft’ was distributed (by Gold-

stine and a Moore School administrator) before references had been added—and

indeed without consideration of whether the names of Eckert and Mauchly

30 N. Macrae, John von Neumann (New York: Pantheon Books, 1992), 23.

31 J. von Neumann, ‘First Draft of a Report on the EDVAC’, Moore School of Electrical Engineering,

University of Pennsylvania, 1945; reprinted in full in N. Stern, From ENIAC to UNIVAC: An Appraisal of the

Eckert-Mauchly Computers (Bedford, Mass.: Digital Press, 1981).

Computable Numbers: A Guide | 25



should appear alongside von Neumann’s as co-authors.32 Eckert and Mauchly

were outraged, knowing that von Neumann would be given credit for everything

in the report—their ideas as well as his own. There was a storm of controversy

and von Neumann left the Moore School group to establish his own computer

project at Princeton. Harry Huskey, a member of the Moore School group from

the spring of 1944, emphasizes that the ‘First Draft’ should have contained

acknowledgement of the considerable extent to which the design of the proposed

EDVAC was the work of other members of the group, especially Eckert.33

In 1944, before von Neumann came to the Moore School, Eckert and Mauchly

had rediscovered the idea of using a single memory for data and programme.34

(They were far, however, from rediscovering Turing’s concept of a universal

machine.) Even before the ENIAC was completed, Eckert and Mauchly were

thinking about a successor machine, the EDVAC, in which the ENIAC’s most

glaring deWciencies would be remedied. Paramount among these, of course, was

the crude wire’n’plugs method of setting up the machine for each new task. Yet if

pluggable connections were not to be used, how was the machine to be con-

trolled without a sacriWce in speed? If the computation were controlled by means

of existing, relatively slow, technology—e.g. an electro-mechanical punched-card

reader feeding instructions to the machine—then the high-speed electronic

hardware would spend much of its time idle, awaiting the next instruction.

Eckert explained to Huskey his idea of using a mercury ‘delay line’:

Eckert described a mercury delay line to me, a Wve foot pipe Wlled with mercury which

could be used to store a train of acoustic pulses . . . [O]ne recirculating mercury line would

store more than 30 [32 bit binary] numbers . . .My Wrst question to Eckert: thinking about

the pluggable connections to control the ENIAC, ‘How do you control the operations?’

‘Instructions are stored in the mercury lines just like numbers,’ he said. Of course! Once he

said it, it was so obvious, and the only way that instructions could come available at rates

comparable to the data rates. That was the stored program computer.35

32 See N. Stern, ‘John von Neumann’s InXuence on Electronic Digital Computing, 1944–1946’, Annals of

the History of Computing, 2 (1980), 349–62.

33 Huskey in interview with Copeland (Feb. 1998). (Huskey was oVered the directorship of the EDVAC

project in 1946 but other commitments prevented him from accepting.)

34 Mauchly, ‘Amending the ENIAC Story’; J. P. Eckert, ‘The ENIAC’, in Metropolis, Howlett, and Rota, A

History of Computing in the Twentieth Century; letter from Burks to Copeland (16 Aug. 2003): ‘before von

Neumann came’ to the Moore School, Eckert and Mauchly were ‘saying that they would build a mercury

memory large enough to store the program for a problem as well as the arithmetic data’. Burks points out

that von Neumann was however the Wrst of the Moore School group to note the possibility, implict in the

stored-programme concept, of allowing the computer to modify the addresses of selected instructions in a

programme while it runs (A. W. Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in

Computers’, in Metropolis, Howlett, and Rota, A History of Computing in the Twentieth Century, 340–1).

Turing employed a more general form of the idea of instruction modiWcation in his 1945 technical report

‘Proposed Electronic Calculator’ (in order to carry out conditional branching), and the idea of instruction

modiWcation lay at the foundation of his theory of machine learning (see Chapter 9).

35 H. D. Huskey, ‘The Early Days’, Annals of the History of Computing, 13 (1991), 290–306 (292–3). The

date of the conversation was ‘perhaps the spring of 1945’ (letter from Huskey to Copeland (5 Aug. 2003) ).

26 | Jack Copeland



Following his Wrst visit to the ENIAC in 1944, von Neumann went regularly to

the Moore School for meetings with Eckert, Mauchly, Burks, Goldstine, and

others.36 Goldstine reports that ‘these meetings were scenes of greatest intellec-

tual activity’ and that ‘Eckert was delighted that von Neumann was so keenly

interested’ in the idea of the high-speed delay line memory. It was, says Gold-

stine, ‘fortunate that just as this idea emerged von Neumann should have

appeared on the scene’.37

Eckert had produced the means to make the abstract universal computing

machine of ‘On Computable Numbers’ concrete! Von Neumann threw himself at

the key problem of devising a practical code. In 1945, Eckert and Mauchly

reported that von Neumann ‘has contributed to many discussions on the logical

controls of the EDVAC, has prepared certain instruction codes, and has tested

these proposed systems by writing out the coded instructions for speciWc prob-

lems’.38 Burks summarized matters:

Pres [Eckert] and John [Mauchly] invented the circulating mercury delay line store, with

enough capacity to store program information as well as data. Von Neumann created the

Wrst modern order code and worked out the logical design of an electronic computer to

execute it.39

Von Neumann’s embryonic programming code appeared in May 1945 in the

‘First Draft of a Report on the EDVAC’.

So it was that von Neumann became the Wrst to outline a ‘practical version

of the universal machine’ (the quoted phrase is Turing’s; see p. 16). The

‘First Draft’ contained little engineering detail, however, in particular concern-

ing electronics. Turing’s own practical version of the universal machine

followed later the same year. His ‘Proposed Electronic Calculator’ set out a

detailed programming code—very diVerent from von Neumann’s—together

with a detailed design for the underlying hardware of the machine (see

Chapter 9).

6. Turing and Babbage

Charles Babbage, Lucasian Professor of Mathematics at the University

of Cambridge from 1828 to 1839, was one of the Wrst to appreciate the enormous

potential of computing machinery. In about 1820, Babbage proposed an

36 Goldstine, The Computer from Pascal to von Neumann, 186.

37 Ibid.

38 J. P. Eckert and J. W. Mauchly, ‘Automatic High Speed Computing: A Progress Report on the EDVAC’,

Moore School of Electrical Engineering, University of Pennsylvania (Sept. 1945), Section 1; this section of

the report is reproduced on pp. 184–6 of L. R. Johnson, System Structure in Data, Programs, and Computers

(Englewood CliVs, NJ: Prentice-Hall, 1970).

39 Burks, ‘From ENIAC to the Stored-Program Computer: Two Revolutions in Computers’, 312.

Computable Numbers: A Guide | 27



‘Engine’ for the automatic production of mathematical tables (such as

logarithm tables, tide tables, and astronomical tables).40 He called it the ‘DiVer-

ence Engine’. This was the age of the steam engine, and Babbage’s Engine was to

consist of more accurately machined forms of components found in railway

locomotives and the like—brass gear wheels, rods, ratchets, pinions, and so

forth.

Decimal numbers were represented by the positions of ten-toothed metal

wheels mounted in columns. Babbage exhibited a small working model of the

Engine in 1822. He never built the full-scale machine that he had designed, but

did complete several parts of it. The largest of these—roughly 10 per cent of the

planned machine—is on display in the London Science Museum. Babbage used

it to calculate various mathematical tables. In 1990 his ‘DiVerence Engine No. 2’

was Wnally built from the original design and this is also on display at the London

Science Museum—a glorious machine of gleaming brass.

In 1843 the Swedes Georg and Edvard Scheutz (father and son) built a sim-

pliWed version of the DiVerence Engine. After making a prototype they built two

commercial models. One was sold to an observatory in Albany, New York, and

the other to the Registrar-General’s oYce in London, where it calculated and

printed actuarial tables.

Babbage also proposed the ‘Analytical Engine’, considerably more ambitious

than the DiVerence Engine.41 Had it been completed, the Analytical Engine

would have been an all-purpose mechanical digital computer. A large model of

the Analytical Engine was under construction at the time of Babbage’s death in

1871, but a full-scale version was never built.

The Analytical Engine was to have a memory, or ‘store’ as Babbage called it,

and a central processing unit, or ‘mill’. The behaviour of the Analytical Engine

would have been controlled by a programme of instructions contained on

punched cards, connected together by ribbons (an idea Babbage adopted from

the Jacquard weaving loom). The Analytical Engine would have been able to

select from alternative actions on the basis of outcomes of previous actions—a

facility now called ‘conditional branching’.

Babbage’s long-time collaborator was Ada, Countess of Lovelace (daughter of

the poet Byron), after whom the modern programming language ada is named.

Her vision of the potential of computing machines was in some respects perhaps

more far-reaching even than Babbage’s own. Lovelace envisaged computing that

40 C. Babbage, Passages from the Life of a Philosopher, vol. xi of The Works of Charles Babbage, ed.

M. Campbell-Kelly (London: William Pickering, 1989); see also B. Randell (ed.), The Origins of Digital

Computers: Selected Papers (Berlin: Springer-Verlag, 3rd edn. 1982), ch. 1.

41 See Babbage, Passages from the Life of a Philosopher; A. A. Lovelace and L. F. Menabrea, ‘Sketch of the

Analytical Engine Invented by Charles Babbage, Esq.’ (1843), in B. V. Bowden (ed.), Faster than Thought

(London: Pitman, 1953); Randell, The Origins of Digital Computers: Selected Papers, ch. 2; A. Bromley,

‘Charles Babbage’s Analytical Engine, 1838’, Annals of the History of Computing, 4 (1982), 196–217.

28 | Jack Copeland



went beyond pure number-crunching, suggesting that the Analytical Engine

might compose elaborate pieces of music.42

Babbage’s idea of a general-purpose calculating engine was well known to

some of the modern pioneers of automatic calculation. In 1936 Vannevar Bush,

inventor of the DiVerential Analyser (an analogue computer), spoke in a lecture

of the possibility of machinery that ‘would be a close approach to Babbage’s large

conception’.43 The following year Howard Aiken, who was soon to build the

digital—but not stored-programme and not electronic—Harvard Automatic

Sequence Controlled Calculator, wrote:

Hollerith . . . returned to the punched card Wrst employed in calculating machinery by

Babbage and with it laid the groundwork for the development of . . . machines as manu-

factured by the International Business Machines Company, until today many of the things

Babbage wished to accomplish are being done daily in the accounting oYces of industrial

enterprises all over the world.44

Babbage’s ideas were remembered in Britain also, and his proposed computing

machinery was on occasion a topic of lively mealtime discussion at Bletchley

Park, the wartime headquarters of the Government Code and Cypher School and

birthplace of the electronic digital computer (see ‘Enigma’ and the introductions

to Chapters 4 and 9).45

It is not known when Turing Wrst learned of Babbage’s ideas.46 There is

certainly no trace of Babbage’s inXuence to be found in ‘On Computable

Numbers’. Much later, Turing generously wrote (Chapter 11, p. 446):

The idea of a digital computer is an old one. Charles Babbage . . . planned such a machine,

called the Analytical Engine, but it was never completed. Although Babbage had all

the essential ideas, his machine was not at that time such a very attractive prospect.

Babbage had emphasized the generality of the Analytical Engine, claiming that

‘the conditions which enable a Wnite machine to make calculations of unlimited

extent are fulWlled in the Analytical Engine’.47 Turing states (Chapter 11, p. 455)

that the Analytical Engine was universal—a judgement possible only from the

vantage point of ‘On Computable Numbers’. The Analytical Engine was not,

however, a stored-programme computer. The programme resided externally on

42 Lovelace and Menabrea, ‘Sketch of the Analytical Engine’, 365.

43 V. Bush, ‘Instrumental Analysis’, Bulletin of the American Mathematical Society, 42 (1936), 649–69

(654) (the text of Bush’s 1936 Josiah Willard Gibbs Lecture).

44 H. Aiken, ‘Proposed Automatic Calculating Machine’ (1937), in Randell, The Origins of Digital

Computers: Selected Papers, 196.

45 Thomas H. Flowers in interview with Copeland (July 1996).

46 Dennis Babbage, chief cryptanalyst in Hut 6, the section at Bletchley Park responsible for Army,

Airforce, and Railway Enigma, is sometimes said to have been a descendant of Charles Babbage. This was

not in fact so. (Dennis Babbage in interview with Ralph Erskine.)

47 Babbage, Passages from the Life of a Philosopher, 97.

Computable Numbers: A Guide | 29



punched cards, and as each card entered the Engine, the instruction marked on

that card would be obeyed.

Someone might wonder what diVerence there is between the Analytical Engine

and the universal Turing machine in that respect. After all, Babbage’s cards

strung together with ribbon would in eVect form a tape upon which the

programme is marked. The diVerence is that in the universal Turing machine,

but not the Analytical Engine, there is no fundamental distinction between

programme and data. It is the absence of such a distinction that marks oV a

stored-programme computer from a programme-controlled computer. As

Gandy put the point, Turing’s ‘universal machine is a stored-program machine

[in that], unlike Babbage’s all-purpose machine, the mechanisms used in reading

a program are of the same kind as those used in executing it’.48

7. Origins of the Term ‘Computer Programme’

As previously mentioned, Turing’s tables of instructions for Turing machines are

examplesofwhat arenowcalled computerprogrammes.Whenhe turned todesign-

ing an electronic computer in 1945 (the ACE), Turing continued to use his term

‘instruction table’ where a modern writer would use ‘programme’ or ‘program’.49

Later material Wnds Turing referring to the actual process of writing instruction

tables for the electronic computer as ‘programming’ but still using ‘instruction

table’ to refer to the programme itself (see Chapter 9, pp. 388, 390–91).50

In an essay published in 1950 Turing explained the emerging terminology to

the layman (Chapter 11, p. 445): ‘Constructing instruction tables is usually

described as ‘‘programming’’. To ‘‘programme a machine to carry out the oper-

ation A’’ means to put the appropriate instruction table into the machine so that

it will do A.’

Turing seems to have inherited the term ‘programming’ from the milieu

of punched-card plug-board calculators. (These calculators were electro-

mechanical, not electronic. Electro-mechanical equipment was based on the

relay—a small electrically driven mechanical switch. Relays operated much

more slowly than the thermionic valves (vacuum tubes) on which the Wrst

electronic computers were based; valves owe their speed to the fact that they

48 R. Gandy, ‘The ConXuence of Ideas in 1936’, in R. Herken (ed.), The Universal Turing Machine: A Half-

Century Survey (Oxford: Oxford University Press, 1998), 90. Emphasis added.

49 ‘Program’ is the original English spelling, in conformity with ‘anagram’, ‘diagram’, etc. The spelling

‘programme’ was introduced into Britain from France in approximately 1800 (Oxford English Dictionary).

The earlier spelling persisted in the United States. Turing’s spelling is followed in this volume (except in

quotations from other authors and in the section by Davies).

50 See also ‘The Turing-Wilkinson Lecture Series on the Automatic Computing Engine’ (ed. Copeland),

in K. Furukawa, D. Michie, and S. Muggleton (eds.), Machine Intelligence 15 (Oxford: Oxford University

Press, 1999).

30 | Jack Copeland



have no moving parts save a beam of electrons—hence the term ‘electronic’.)

Plug-board calculators were set up to perform a desired sequence of arithmetical

operations by means of plugging wires into appropriate sockets in a board

resembling a telephone switchboard. Data was fed into the calculator from

punched cards, and a card-punching device or printer recorded the results of

the calculation. An early example of a punched-card machine was constructed in

the USA by Herman Hollerith for use in processing statistical data gathered in

the 1890 census. By the mid-twentieth century most of the world’s computing

was being done by punched-card calculators. Gradually the technology was

displaced by the electronic computer.

When Turing joined the National Physical Laboratory in 1945 there was a large

room Wlled with punched-card calulating equipment. David Clayden, one of the

engineers who built the ACE, describes the punched-card equipment and the

terminology in use at that time:

When I started at NPL in 1947 there was a well established punched card department,

mainly Hollerith. The workhorse of punched card equipment is the ‘Reproducer’, which

has a broadside card reader and a broadside card punch. By taking a stack of cards from

the punch and putting them into the reader, it is possible to do iterative calculations. All

functions are controlled by a plugboard on which there are two sets of 12 � 80 sockets,

one for the reader and one for the punch. In addition there is a relay store [i.e. memory].

The plugboard can be connected in many ways (using short plugleads) in order to

perform many functions, including addition, subtraction, and multiplication. The plug-

boards are removable. NPL had a stack of them and called them ‘programme’ boards.51

Turing’s own preference for ‘instruction table’ over the noun ‘programme’ was

not shared by all his colleagues at the NPL. Mike Woodger, Turing’s assistant

from 1946, says: ‘ ‘‘Programme’’ of course was an ordinary English word meaning

a planned sequence of events. We adopted it naturally for any instruction table

that would give rise to a desired sequence of events.’52 The noun ‘programme’

was in use in its modern sense from the earliest days of the ACE project. A

report (probably written by Turing’s immediate superior, Womersley) describing

work done by Turing and his assistants during 1946 stated: ‘It is intended to

prepare the instructions to the machine [the ACE] on Hollerith cards, and it is

proposed to maintain a library of these cards with programmes for standard

operations.’53 By the early 1950s specially printed ruled sheets used at the

NPL for writing out programmes bore the printed heading ‘ACE Pilot Model

Programme’.54

51 Letter from Clayden to Copeland (3 Oct. 2000).

52 Letter from Woodger to Copeland (6 Oct. 2000).

53 ‘Draft Report of the Executive Committee for the Year 1946’, National Physical Laboratory, paper

E.910, section Ma. 1, anon., but probably by Womersley (NPL Library; a digital facsimile is in The Turing

Archive for the History of Computing <www.AlanTuring.net/annual_report_1946>).

54 J. G. Hayes, ‘The Place of Pilot Programming’, MS, 2000.

Computable Numbers: A Guide | 31

www.AlanTuring.net/annual_report_1946


A document written by Woodger in 1947 used the single ‘m’ spelling: ‘A

Program for Version H’.55 Woodger recalls: ‘We used both spellings carelessly

for some years until Goodwin (Superintendent of Mathematics Division

from 1951) laid down the rule that the ‘‘American’’ spelling should be used.’56

It is possible that the single ‘m’ spelling Wrst came to the NPL via the American

engineer Huskey, who spent 1947 with the ACE group. Huskey was respon-

sible for ‘Version H’, a scaled-down form of Turing’s design for the ACE (see

Chapter 10).

Like Turing, Eckert and Mauchly, the chief architects of ENIAC, probably

inherited the terms ‘programming’ and ‘program’ from the plug-board calcula-

tor. In 1942, while setting out the idea of a high-speed electronic calculator,

Mauchly used the term ‘programming device’ (which he sometimes shortened to

‘program device’) to refer to a mechanism whose function was to determine how

and when the various component units of a calculator shall perform.57 In the

summer of 1946 the Moore School organized a series of inXuential lectures

entitled ‘Theory and Techniques for Design of Electronic Digital Computers’. In

the course of these, Eckert used the term ‘programming’ in a similar sense when

describing the new idea of storing instructions in high-speedmemory: ‘We . . . feed

those pieces of information which relate to programming from the memory.’58

Also in 1946, Burks, Goldstine, and von Neumann (all ex-members of the Moore

School group) were using the verb-form ‘program the machine’, and were speak-

ing of ‘program orders’ being stored in memory.59 The modern nominalized form

appears not to have been adopted in the USA until a little later. Huskey says, ‘I am

pretty certain that no one had written a ‘‘program’’ by the time I left Philadelphia

in June 1946.’60

Part II Computability and Uncomputability

8. Circular and Circle-Free Machines

Turing calls the binary digits ‘0’ and ‘1’ symbols ‘of the Wrst kind’. Any symbols

that a computing machine is able to print apart from the binary digits—such as

55 M. Woodger, ‘A Program for Version H’, handwritten MS, 1947 (in the Woodger Papers, National

Museum of Science and Industry, Kensington, London (catalogue reference N30/37) ).

56 Letter from Woodger to Copeland (6 Oct. 2000).

57 J. W. Mauchly, ‘The Use of High Speed Vacuum Tube Devices for Calculating’ (1942), in Randell, The

Origins of Digital Computers: Selected Papers.

58 J. P. Eckert, ‘A Preview of a Digital Computing Machine’ (15 July 1946), in M. Campbell-Kelly and

M. R. Williams (eds.), The Moore School Lectures (Cambridge, Mass.: MIT Press, 1985), 114.

59 Sections 1.2, 5.3 of Burks, Goldstine, and von Neumann, ‘Preliminary Discussion of the Logical Design

of an Electronic Computing Instrument’ (von Neumann, Collected Works, vol. v, 15, 43).

60 Letter from Huskey to Copeland (3 Feb. 2002).

32 | Jack Copeland


