34

CYBERNETICS AND
INFORMATION
TECHNOLOGY

MICHAEL S. MAHONEY

Since the Second World War, ‘information’ has emerged as a fundamental
scientific and technological concept applied to phenomena ranging from black
holes to DNA, from the organisation of cells to the processes of human thought
and from the management of corporations to the allocation of global resources.
In addition to reshaping established disciplines, it has stimulated the formation
of a panoply of new subjects and areas of inquiry concerned with its structure
and its role in nature and society. Embodied in the computer, theories based on
the concept of ‘information’ have so permeated modern culture that it is now
widely taken to characterise our times. We live in an ‘information society’, an
‘age of informaton’.

Current awareness of the fundamental nature of information and of its deter-
minative role in modern life makes it difficult to unravel the threads of its his-
tory, especially when following them back to a time when ‘information’ had only
common meaning. One may speak today of the printing press, typewriter, tele-
graph or telephone as ‘information machines’, but that is not how they were
originally conceived, and including them in the history of information risks
losing sight of the time and place at which the concept itself emerged and of
the process by which it came to shape modern thought and even self-
consciousness.

Information in the modern technical sense emerged from a complex of activi-
ties which, underway just before the Second World War, gained impetus from
wartime research and culminated in 1948 with the appearance of Norbert
Wiener’s Cybernetics: or Control and Communication in the Animal and the Machine
(1948) and Claude E. Shannon’s The Mathematical Theory of Communication
(1948). Although neither work encompassed the full variety of current research

537

TURNING POINTS

related to it, both provided initial points of reference for organising and direct-
ing subsequent investigation. In addition, Wiener’s cybernetics and Shannon’s
‘information theory’ (as it was commonly called, despite his disapproval)
attracted the attention of scholars in other fields, who sought to apply or adapt
these new concepts and methods to their own concerns.

1. CYBERNETICS AND INFORMATION THEORY

Wiener used the term ‘cybernetics’ to characterise the common elements of his
work with Vannevar Bush on computing machines, with Yuk Wing Lee on elec-
trical networks, with Julian Bigelow on the prediction of flight paths and with
Arturo M. Rosenblueth and Walter Pitts on neuromuscular behaviour and
neuro-physiology.” Fundamentally, Wiener concluded that control in both
mechanical and biological systems depends on feedback, which in turn requires
communication of information within the system. Secondly, ‘the ultra-rapid
computing machine, depending as it does on consecutive switching devices,
must represent an ideal model of the problems arising in the nervous system’
and conversely ‘was in principle an ideal central nervous system to an apparatus
for automatic control’.?

The intimate link between control and communications shifted attention
from the specifics of electrical engineering to the more general notion of the
message, however transmitted. Viewed as time series, messages become predic-
table through statistical analysis and prediction can be optimised by means of
the calculus of variations. Messages transmitted over physical channels are sub-
ject to distortion by background noise and hence raise the problem of their
accurate reconstruction. Consideration of that problem led Wiener to the ques-
tion of the measure of information and through it to the relation of information
and entropy, by which he arrived again at the living organism.

The nature of information linked Wiener’s work to Shannon’s, whose paper
had the more narrowly defined goal of defining the capacity of a communica-
tions channel, of determining ‘the effect of statistical knowledge about the
source in reducing the required capacity of the channel, by the use of proper
encoding of the information’ and of setting the limits of possibility of correctly
construing a message transmitted in the presence of noise.? Starting from the
principle that information resolves uncertainty, Shannon measured information
with reference to the number of possible messages that could be sent in a given
time using a given set of symbols. The precise form of measure being arbitrary,
Shannon chose as the unit of information for discrete channels the single binary
digit or ‘bit’ (coined by John Tukey of Bell Labs.) A set of n symbols s,
each with a corresponding probability p; has the informational content of
H=—-23p; log,(p,) bits; if the symbols are equiprobable, the measure reduces
to H=log,n, which is the maximum. More usual are messages in which the

538

CYBERNETICS AND INFORMATION TECHNOLOGY

different p; depend on previous sequences (Markov processes) and in which the
distributions in randomly chosen messages of sufficient length are representa-
tive of distributions over all messages (ergodic processes).

Viewed as a measure of uncertainty or surprise, information can be construed
as a form of entropy and Shannon chose his function with Boltzmann’s H
theorem in mind. By increasing the uncertainty about the source of signals and
hence about the message being transmitted, noise adds to the entropy of a
channel, detracting from its useful capacity. However, as Shannon showed,
given sufficient capacity, the entropy of noise can be overcome to an arbitrary
degree by a suitable encoding of the message, which in essence lowers the
entropy of the source through redundancy. That one pays for certainty at the
cost of information places a premium on efficiency of coding, a subject which,
already under investigation at the time, gained new impetus from Shannon’s
results.*

Tied to systems of communications and thus to the problem of selecting the
correct message from a range of possible ones, Shannon’s measure of infor-
mation did not meet the needs of others seeking to quantify ‘constructive’ infor-
mation, for example Donald McKay and Dennis Gabor.5 Nonetheless, it soon
became a touchstone for work in a range of fields. Léon Brillouin’s analysis in
depth of the relation of entropy and information led in the mid-1950s to the
formulation of statistical thermodynamics as a branch of information theory.
Joining Shannon’s theory with John von Neumann’s research on automata and
the construction of reliable organisms from unreliable components, Samuel
Winograd and Jack D. Cowan established the principles of reliable computation
in the presence of noise (1963). Other applications were less successful. Enthu-
siasm among biologists in the 1g50s for applying Shannon’s results to genetic
information waned in the 1960s, largely owing to equivocal use of the term
‘information’ itself. Similar overextensions of the theory led to a certain disen-
chantment with it by the late 1960s. Nonetheless, Shannon’s work remained
fundamental to the theory of coding and hence made its continuing presence
felt not only in communications research but also in computer science.

Cybernetics followed a similar pattern of enthusiastic reception followed by
overextension and disenchantment. By the late 1960s the term itself gradually
disappeared from use in the United States and Western Europe, although it is
still common in the Eastern bloc. Yet, the themes and approaches it encom-
passed have continued to develop since then, pursued separately in the disci-
plines Wiener sought to bring together and in new disciplines spawned from
them.® Both the fate of cybernetics and its effect on other subjects are perhaps
best understood by examining more closely the technological context in which it
arose.

As Wiener himself emphasised, in both conception and implementation,
cybernetics was intimately tied to the new forms of automatic computation

539

TURNING POINTS

developing rapidly during the decade from the late 1930s to the late 1940s. In
addition to providing a tool for solving the problems in applied mathematics
that Wiener’s methods entailed, it served as his model of the nervous system.
The design of computers in turn posed problems of a cybernetic nature and
hence constituted a field of application for his methods, as it did for Shannon’s.
Yet, the computer had its own intellectual and technical roots, which deter-
mined its development independently of its role in cybernetics and which
thereby conditioned that role. Especially for those who viewed cybernetics in
the wider sense of systems theory, the computer ultimately offered resources
that far exceeded Wiener’s vision or even contradicted it.

In particular, the computer both accommodated and encouraged a broader
view of ‘information’, and of how it can be transformed and communicated over
time and space, than that which underlay the new theory. It thereby trans-
formed traditional methods of accounting and record-keeping into a new
industry of data processing, posing both unprecedented possibilities and unan-
ticipated dangers. Since the 1950s the computer, both as processor of infor-
mation and as vehicle of communication over both space and time, has come to
form the core of modern information technology. What the English-speaking
world refers to as computer science is known to the rest of Western Europe as
informatique (or Informatik or informatica). Much of the concern over infor-
mation as a commodity and as a natural resource derives from the computer
and from computer-based communications technology.” Hence, the history of
the computer and of computing is central to that of information science and
technology, providing a thread by which to maintain bearing while exploring the
ever-growing maze of disciplines and subdisciplines that claim information as
their subject.

2. COMPUTERS AND COMPUTING

The computer itself is the product of two lines of historical development corre-
sponding roughly to the distinction between the physical machine, or hardware,
and the programs or sofimware, that guide its operation. As a physical device, the
first all-electronic calculator, ENIAC, crowned longstanding efforts to auto-
mate large-scale computation and tabulation. As logic machines, the first
stored-program computers, EDSAC and EDVAC, emerged as by-products of
theoretical inquiry into the nature and limits of logical thought, in particular as a
foundation for mathematics.

2.1. The electronic calculator

The mechanisation of computation began in the late Middle Ages with the
invention of such analog devices as mechanical clocks, planetaria and related

540

CYBERNETICS AND INFORMATION TECHNOLOGY

automata. The first digital mechanisms appeared in the seventeenth century.
The machines of Wilhelm Schickard (1623) and Blaise Pascal (the ‘Pascaline’,
1654) used geared wheels to perform addition and substraction automatically
upon entering the terms. While Schickard retained logarithmically scaled rods
(‘Napier’s Bones’) for multiplication and division, Gottfried Wilhelm Leibniz
devised a shifting mechanism for translating those operations into repeated
addition and subtraction (1672). Legend would have it that these machines
responded to computational needs; one hears, for example, of Pascal seeking to
ease his father’s job as tax collector. Yet, in practice, none operated at the speed
of a skilled human reckoner. Rather, they were viewed as objects of wonder in
their capacities as automata to emulate not physical actions, but the highest
form of rational thought.

Only in the early nineteenth century did the computational needs of science,
especially the new fields of thermodynamics and electricity and magnetism,
together with their applications to industry, begin to stimulate a steady develop-
ment of practical devices of increasing power. The hand-driven mechanical cal-
culator reached its final configuration, while new designs appeared in the form of
the ‘difference engine’, the planimeter and the harmonic analyser. The first of
these, invented in 1823 by Charles Babbage to automate the calculation of math-
ematical and astronomical tables and subsequently improved by Georg Scheutz
and others, reflected the recent development of the calculus of finite differences
and approached the limits of digital computation by mechanical linkage, thus
encouraging a turn tc analog devices. Various planimeters (J. H. Hermann (181 4),
Jacob Amsler (1854), Clerk Maxwell (1855), J. Thompson (1876)) translated the
integration of curves into continuous compound mechanical action, while the
harmonic analyser (Kelvin (1873), Michelson and Stratton (1898)) linked the
integrators to model the solution of differential equations via Fourier series.

By the middle of the nineteenth century, new commercial and industrial
organisations, especially those that conveyed the increasing output of new forms
of production to an ever-widening consumerate, enhanced the demand for
improved accounting machines while adding to it the need for new means of
mechanical record-keeping and tabulation of data. Governments, too, added to
the demand as industrialisation placed new responsibilities on them in the
realms of finance, regulation, public health and social services and thus multi-
plied both the volume and the importance of social statistics. In the United
States, where apportionment of congressional representation rests on a decen-
nial census, it was clear by the late 1880s that without automatic tabulation the
count for 1890 could not be completed before the year 1900. Herman Holler-
ith’s electrically activated punched-card tabulating machine (1894) responded
directly to that need and became the basis for a new industry.

While responding to immediate needs, some inventors looked beyond
them to longer-range possibilities, thus focusing attention on the nature of

541

TURNING POINTS

computation itself. Foremost among them was Charles Babbage. Before com-
pleting the construction of his Difference Engine, he became absorbed in over-
coming its limitation to executing only a single compound calculation at a time,
the form of which is built into the machine, and in 1834 conceived an ‘Analyti-
cal Engine’ which would automatically carry out a variety of operations in
response to a sequence of commands. His design, modelled in part after Jac-
quard’s loom and in part after the maze of gears and shafts that was the early
English factory, was a microcosm of the Industrial Revolution: values placed in
‘storage’ moved in and out of an arithmetical ‘mill’ performing operations
recorded on punched cards. Since its mechanical form dictated that power var-
ied with size, Babbage looked beyond hand-driven models to the driving force
of steam. Except for a few sub-units, the engine never went beyond the stage of
intricate drawings and was soon all but forgotten. Its structure probably
exceeded the capabilities of machine technology and would in any case have
been too slow to be useful. It did, however, provoke the first effort to specify the
nature of the operations involved in instructing a machine and thereby earned
Ada, Countess Lovelace the reputation of the world’s first programmer.

The distribution of electrical power and telephone service in the early twen-
tieth century posed new computational problems, while providing new models
for their solution. The design of electric power grids entailed the solution of
large systems of simultaneous equations, both finite and differential. Here ana-
log devices taking increased advantage of electrical technology continued to
lead the field. A ‘product integraph’ developed at MIT under the guidance of
Vannevar Bush (1927) integrated expressions of the form f; (x)f (x)dx by mecha-
nical analog multiplication followed by integration via electric meter and
mechanical rotation. Bush’s differential analyser (1931) reversed that action,
adding the output of electronic torque amplifiers to multiply via integration, i.e.
wv = fudv + Svdu.

Telephone switching systems involved increasingly complex configurations
of electrical relays opening and closing circuits in response to input from users,
a process which was soon recognised as itself a form of computation. The logi-
cal analysis of such systems (in particular by Shannon at MIT in the late 1930s)
suggested the linking of relays to model binary arithmetic. A simple adder cir-
cuit designed by George Stibitz at Bell Telephone Laboratories in 1937 soon
led to a relay device capable of handling complex numbers (Model I, 1939);
reached in New York via telegraph lines from Hanover, New Hampshire, it also
provided the first demonstration of remote computation in 1940. During the
same period, Howard Aiken at Harvard, with the support of IBM, began the
construction of a general-purpose electromechanical computer, the Mark 1
(1943).

While electrical relays made binary computation practical, the remaining
mechanical components placed a physical limit on the speed of computation.

542

CYBERNETICS AND INFORMATION TECHNOLOGY

Even as the relay machines were being designed, they stimulated experiments
with circuits using electronic tubes instead of relays. J. V. Atanasoff constructed
a small device at the University of lowa (1939—40). Under circumstances still
not entirely clarified, Atanasoff’s work came to the attention of John Mauchly
soon before he moved from Ursinus College to the Moore School of Engineer-
ing at the University of Pennsylvania to take charge of a Bush differential ana-
lyser then being pressed into national service for the computation of firing
tables for the United States Army’s Ballistic Research Laboratory. With the
support of Herman Goldstine, the Army’s technical liaison to the project,
Mauchly and his colleague J. Presper Eckert gained approval in 1943 for the
development of the first all-electronic computer, the Electronic Numerical
Integrator and Automatic Calculator (ENIAC), which came on line in 1946.8

Using some 18,000 vacuum tubes in a circuit design that seemed to defy the
inherent probability of failure, ENIAC retained in its design some of its origins
in mechanical calculation. It did arithmetic decimally, using ring counters and
storing intermediate results in accumulators consisting of banks of such coun-
ters. Fixed data (constants) were held in function tables set manually by
switches and, in a manner similar to computation using electrical accounting
machinery, the computer followed a fixed program set up manually by setting
switches and connecting wires. Nonetheless, operating at a speed of some 5000
ten-digit additions a second, it marked the advent of modern high-speed com-
puting and served as prototype for all hardware to follow.

2.2. The stored-program computer

As progress on ENIAC demonstrated the feasibility of large-scale electronic
calculation, thought turned to internalising its programs by enabling it to modify
its instructions in response to the results it was generating. Again, the precise
details have not been resolved, but it seems clear that John von Neumann
played a major role in laying out the logical structure of the stored-program
computer. In addition to his own ideas on automata, he brought to the task an
understanding of the work of Alan Turing, whose article, ‘On Computable
Numbers, with an Application to the Entscheidungsproblem’, defined the abstract
structure of machines capable of logical calculation and who was himself at
work designing one of England’s earliest computers, the Pilot ACE.%

Turing’s theoretical work belonged to a quite different line of scientific
development from that of mechanical calculators, yet one that also stemmed
from the early nineteenth century, with roots reaching back initally to the
seventeenth. In addition to designing the earliest four-operation calculator,
Leibniz also explored binary arithmetic and discussed the idea of a symbolic
logical calculus.”® But these ideas remained separate in his mind and undevel-
oped in his works. Not until the nineteenth century did they again emerge as

543

TURNING POINTS

sustained themes of mathematical inquiry, first in the efforts of George Boole to
develop an algebra of logic that might serve as a vehicle for the ‘laws of
thought’. His study of the theory of operators led him to the notion of classes as
operators on sets of objects and then to an algebra of those classes. For
example, if C is a deck of cards, one may take x as an operator selecting the
hearts from the deck, y as one selecting the diamonds and z as one selecting
face cards. Then ¥C + yC = (x + y)C selects all red cards and z(x + y)C, all red
face cards. Clearly, #*(C) = x(x(C)) = x(C). Moreover, if C—xC = (1—x)C
designates all non-hearts, then x+(1—x) = r,and x(1—x) =x—x*=x —x =0
and so on. Since the criterion of selection in each case is binary, Boole’s classes
correspond to logical functions and their relations to an algebra of logic.

Given the cultural presence of machinery in the nineteenth century, it is not
surprising that efforts to mathematise or quantify the rules of logic should issue
in the design of logic machines such as those of James Jevons in England and
Allan Marquand in the United States. Marquand’s friend Charles S. Peirce
even suggested replacing the rods and strings of the machine with electrical cir-
cuits. But the devices served no practical purposes and remained at best aids to
understanding the structure of logical reasoning.

In the late nineteenth century attention shifted from the mathematics of logic
to the logical foundations of mathematics, as new fields like non-Euclidean
geometry, vector algebra and abstract finite algebras undermined reliance on
intuition and spurred a drive toward rigorous formalisation. In that context,
Gottlob Frege attempted a reduction of arithmetic to logic (Grundlagen der
Arithmetik, 1884) and produced instead the first of the antinomies (Russell’s
paradox) that soon cast the consistency of logic itself in doubt; an equally troub-
ling paradox issued from the work of Georg Cantor and Cesare Burali-Fort on
transfinite numbers (1895-7). David Hilbert’s famous Program of 1goo
included in its agenda for mathematics a formalisation of the subject capable of
resolving what he later (Grundziige der theoretischen Logik, 1928, with W. Acker-
man) termed the Entscheidungsproblem: is there a general procedure for deciding
whether a statement of a given axiom system has a proof in that system? Ber-
trand Russell’s and Alfred North Whitehead’s Principia mathematica (1910)
unintentionally emphasised the centrality of the problem when Kurt Godel
(‘On formally undecidable propositions in Principia mathematica’, 1931) showed
that any logic powerful enough to generate arithmetic had to be either incom-
plete — that is, include formally undecidable propositions — or inconsistent.

Godel’s proof employed the technique of assigning numbers to the state-
ments of a system and then couching the proof of a proposition from the axioms
in terms of an effective procedure for computing the proposition’s number from
those of the axioms. Decidability came down to computability. Turing’s paper
of 1936 gave a precise definition to the notion of an effective computational

544

CYBERNETICS AND INFORMATION TECHNOLOGY

procedure by expressing it as an abstract finite-state machine consisting of a
potentially infinite tape divided into cells and passing under a device capable of
reading from a cell, or writing to it, one of a finite set of symbols and of moving
right or left to the neighbouring cell. The machine carried out an effective pro-
cedure by passing through a finite set of states in a finite number of steps from
an initial configuration of symbols on the tape to a desired final configuration.
Each state could be characterised as a vector containing the symbol in the cur-
rent cell, the action to be taken and the state to follow; a vector of the state vec-
tors then characterised the procedure and thus the machine itself.

On the basis of this definition, Turing showed that there exist numbers
which are definable but not computable. Moreover, since by a suitable conven-
tion the last vector could be translated into a configuration of symbols on the
tape, Turing machines themselves were subject to computation by Turing
machines. On that basis, Turing proved that ‘there can be no general process
for determining whether a given formula [A] of the [restricted Hilbert] func-
tional calculus K is provable, i.e. that there can be no machine which, supplied
with any one [A] of these formulae, will eventually say whether [A] is prov-
able’."’

Turing set out as the most general form of his machine a universal pro-
cedure for reading the description of any Turing machine at the beginning of
a tape and then instantiating it for the configuration on the remainder of the
tape. That universal machine contained the germ of the stored-program com-
puter, for it meant that the same tape could contain both instructions and
data, interpreted as one or the other in accordance with the state of the scan-
ning head. In essence, the computer replaced the tape by an addressable
memory holding sequences of binary digits and the read-write head by separ-
ate arithmetical and control units, the former of which operates on those
sequences and the latter of which interprets them as instructions. Treated as
data, instructions can be modified in the course of computation; more impor-
tantly a set of instructions can be self-modifying in response to the results it
is generating.

The original ENIAC group had taken some steps toward the internal storage
of its instructions when von Neumann joined their efforts, but the fundamental
logical structure of a stored-program device emphasised in his ‘First draft of a
report on the EDVAC’ (1945) appears to have stemmed from him. With that
report and the ‘Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument’ composed together with Arthur Burks and Herman
Goldstine in 1946, the electronic digital computer assumed its basic form.
Cambridge University’s EDSAC, under the direction of Maurice Wilkes, first
realised that form in a working machine in 1949. Eckert and Mauchly’s BINAC
soon followed in the United States.

545

TURNING POINTS

3. THE COMPUTER INDUSTRY

Viewed before the war as an esoteric device of unproved value, the electronic
computer was born of extensive government funding in response to specific
military needs. In the immediate post-war years also, even after ENIAC had
demonstrated the feasibility of the computer and its importance to scientific
research, further development still depended on government funding, either by
direct subvention or through contracts for the development of specific
machines. Although Ferrant Ltd joined with the University of Manchester in
1949 to develop a commercial version of its prototype Mark I, it was not until
1950, as the first stored-program computers went into operation, that major
corporations in the United States began to take an interest in them as potential
products. Remington Rand acquired Engineering Research Associates and the
Eckert and Mauchly Company, then building the famous Univac, and was in
turn acquired by Sperry. IBM, which in 1948 had built the (partially electro-
mechanical) Selective Sequence Electronic Computer as a single showpiece for
its world headquarters, entered the market only in response to Univac’s threat
to its line of electrical accounting machinery. Its first commercial machines, the
701 and 704 appeared in 1953, followed a year later by the popular 650 with its
magnetic drum storage.

The first trickle of commercial machines soon became a flood. By 19635, cus-
tomers in the United States could choose among more than 100 models offered
by over twenty manufacturers; an additional 100 models were available from
over 25 companies world-wide. The advent of the minicomputer around 1970,
and of the microcomputer a decade later, brought similar spurts of growth to
the industry. Side by side with the manufacture of the devices themselves
emerged a new data-processing industry, which by 1970 accounted for some 2
per cent of the gross national product of the United States.

The commercialisation of the computer shaped its development both as a
scientific and technical device and as the focus of an emerging professional
discipline with its attendant institutions. Conceived for scientific purposes and
born of military needs, the device initially responded to no immediate demand
from the world outside science and engineering. Few, if any, of IBM’s cus-
tomers clamoured for electronic versions of their electrical and electromechani-
cal accounting equipment. Rather, that demand had to be created by devising
applicatons for the computer in the realms of finance, management and com-
munications. Those applications and the machines needed to implement them
meant keeping pace with scientific and technological development, which in
turn meant closer and more open ties between industrial research institutions
and the rapidly expanding scientific community in the universities and at now-
permanent government installations. Dependent in turn on the computer
industry for funding and for technical support, academic computer science took

546

CYBERNETICS AND INFORMATION TECHNOLOGY

shape partly in response to corporately defined research needs. From the out-
set, the careers of computer people show a characteristic pattern of regular and
easy movement between campus, industry and government facilities.

3.1. Computer science

From about 1950 onwards, computing gradually assumed a shape and place of
its own among the disciplines of science and engineering. In 1954, the seven-
year-old Association for Computing Machinery (ACM) announced in the first
number of its_Journal that it would henceforth leave questions of hardware to
the American Institute of Electrical Engineering and the Institute of Radio
Engineers and direct its efforts instead to ‘the other phases of computing sys-
tems, such as numerical analysis, logical design, application and use and, last
but not least, to programming’. Far from last or least, programming soon
emerged as a body of concepts and techniques distinct from the architectures of
particular machines, as its practitioners identified the algorithms, data struc-
tures, search and sort routines on which programs rest. Preparation of Programs
Jor an Electronic Digital Computer (1951) by Maurice Wilkes, D. J. Wheeler and
Stanley Gill marks perhaps the beginning of that line of development, while
Donald E. Knuth’s The Art of Computer Programming (1969) represents a major
stage of consolidation.

In the early 1960s the ACM followed the National Academy of Sciences and
the Mathematical Association of America in recognising ‘computer science’ as a
distinct field of study ‘embracing such topics as numerical analysis, theory of
programming, theory of automata, switching theory, etc.” and undertook, with
considerable discussion, to define a suitable curriculum at graduate and under-
graduate levels. Soon after, in 1967, recurrent difficulties encountered by
large-scale programming projects prompted the NATO Science Committee to
set up a study group on computer science, which in turn urged the establish-
ment of a discipline of ‘software engineering’, which would base the manufac-
ture of software ‘on the types of theoretical foundations and practical disciplines
that are traditional in the established branches of engineering’. With profession-
alisation and ramification into sub-disciplines came a panoply of new organis-
ations and publications. By 1970 some 400 journals strove to meet the
informational needs of several hundred thousand computer scientists and data-
processing professionals.

The intellectual origins of the computer combined neatly with the exigencies
of its commercialisation in directing much of the research agenda during the
next decades. Making the computer accessible to users from a wide range of
backgrounds was essential both to exploring its theoretical potential and to mar-
keting it. Computer scientists and business users had a common stake in the

547

TURNING POINTS

development of programming languages, of operating systems and of appli-
cations to non-numerical data.

3. 1. 1. Programming languages

Essential both to Turing’s theory of computing machines and to von Neu-
mann’s theory of self-reproducing automata was the notion of the self-
programming computer. The stored program realised that notion to the extent
of enabling the computer to modify its instructions and thus control the flow of
computation in response to the results being generated. But those instructions
initially had to be specified in excruciating detail using the machine’s own
language of sequences of binary digits, or ‘bits’. ‘Automatic programming’
aimed at bringing the language of specification closer to human usage and at
automating such standard tasks as allocation of memory, calling sequences for
subroutines, assembly of subroutines from libraries, input/output protocols and
loading formats.

The first ‘assemblers’ in the early 1950s gave rise to a “Tower of Babel’ of
programming languages by the late 1960s and then to a measure of standardis-
ation in the 1g70s. The major achievements include FORTRAN (Backus,
1956), LISP (McCarthy, 1958), COBOL (Hopper, 1959), APL (Iverson,
1962), BASIC (Kemeny and Kurtz, 1965) and the succession of ALGOLs
(international committees, 1958, 1960, 1968) capped by PASCAL (Wirth,
1971). The first report on ALGOL in 1959 set the standard for specifying the
syntax of languages with John Backus’s Normal Form (BNF), later modified by
Peter Naur (whence ‘Backus Naur Form’). That technique and others drawn
from ongoing research in automata theory and mathematical linguistics,
especially the work of Noam Chomsky, placed the design of languages and, to
some extent, their compilers on theoretical foundations independent of any
particular machine and hence made the languages themselves portable between
different machines.

At the same time most of these languages remained tied through their primi-
tive terms (integers, real numbers, characters and arrays) to the basic architec-
ture of the computer. During the 1970s emphasis began to shift to languages
which included a wider and more flexible range of data structures and objects
— including programs — and which focused on the objects of computation and
relations between them rather than on procedures. That development, in par-
ticular FORTH (Moore, 1969), C (Ritchie, 1972), Small Talk (Kay, 1972-80),
ADA (Ichbiah, 1978) and MIT’s LISP machine, aimed at embedding
languages in a programming environment and reflected both the concomitant
development of operating systems and the recent advent of powerful small com-
puters.

548

CYBERNETICS AND INFORMATION TECHNOLOGY

3.1.2. Operating systems

Suitably programmed, the computer also had the capacity to oversee its own
efficient operation. The high cost of computers spurred efforts to minimise the
time during which the processor stood idle, either between jobs or during
transfers of data (I/0 for ‘input/output’) to and from much slower peripheral
devices. Operating systems began in the early 1950s with simple monitor pro-
grams to schedule and set up jobs handled sequentially. Between 1955 and
1964, more elaborate multiprogramming systems supervised several programs
at once, switching them in and out of the main processor as they waited for L/O;
new multiprocessing systems allocated the work of programs over several pro-
cessors. Beginning in 1962 ‘timesharing’ systems adapted the notion of mult-
plexing to enable several users to share the resources of a single computer and
to use the device interactively. In the United States these systems derived in
part from the earlier development of the SAGE air defence system (1951-8)
and SABRE airline reservation system (1963), both of which monitored trans-
actions from many users working simultaneously, and served as protototypes for
later real-time process control systems.**

Operating systems entered a new phase of development in 1964 with IBM’s
0S/360, designed to provide users with a common interface over a range of
different machines and hence with generically defined systems services. Sub-
sequent versions embodied the notion of the ‘virtual machine’, which presented
each of many users with the image of an independent machine with its own
operating system and permitted different users to use different systems. UNIX,
introduced by Bell Labs in 1976, offered a highly interactive, multi-user
environment linked by single file system. Operating systems perhaps reached
the peak of their size and complexity in the late 1970s, as subsequent develop-
ment, sparked by the advent of minicomputers and microcomputers, focused
attention on the sharing of information and services between computers distri-
buted over a network.

3.1.3. Sofiware and its problems

Operating systems constituted only one sort of sophisticated, large-scale pro-
gramming project undertaken in the 1960s. Others included, in addition to
SAGE and SABRE, air-traffic control systems, large databases for government
and industry, electronic switching systems for communications networks and
control and communications systems for the United States’s space programme.
While many remarkable achievements issued from such projects, they also
encountered difficultdes that caused growing concern among practitioners

549

TURNING POINTS

about the industry’s capacity to produce reliable software on time and at
reasonable cost. By 1969, leaders in the field were speaking of a ‘software crisis’
and urging that software be placed on a more scientific footing. One response
was the concept of ‘structured programming’. Introduced by Edsger Dijkstra in
1969 and developed further by C.A.R. Hoare in England and Niklaus Wirth in
Switzerland and the United States, it aimed at a discipline of programming
supported by appropriate languages and under-pinned by methods of theoreti-
cal verification (as opposed to empirical debugging). However, the movement
encountered resistance among data processing workers. Despite the growing
effort of software engineering during the 1970s software continued to resist
efforts to automate its production and to establish standards of productivity and
reliability.

3.2. Miniaturisation

The problems of software loomed even larger by contrast to the rapid develop-
ment of hardware over the same period. During the 1950s the limitations of
hardware both shaped and hindered the design of software. Assemblers and
compilers require large memories to hold the intermediate tables and files they
create in translating source code. So too do operating systems, which must
remain resident (at least in part) while monitoring programs and responding to
requests for system support. The more sophisticated the compiler or operating
system, the greater the demand for memory and processor speed. Hence many
of the developments in software depended on a series of revolutionary develop-
ments in electronics that produced order-of-magnitude increases in the speed
and internal capacity of computers while reducing their cost and external
dimensions to the same degree. As computer designers in the late 1940s looked
to mercury delay lines, cathode ray tubes and diodes to reduce the number of
vacuum tubes, researchers at Bell Laboratories assembled the first transistor
(Brattain, Bardeen and Schockley, 1947—9). By the late 1950s, as transistor
based computers were coming on the market, offering more computing power
in less space for less money, experiments got underway with the first integrated
circuits (Kilby, 1958; Noyce, 1959) which in turn made their commercial
appearance in IBM’s System 360 in 1964. Thereafter, the combination of
miniaturisation and large-scale integration, spurred and supported by military
research and the space program, produced a succession of ever more powerful
chips, which by the late 1970s were capable of holding an entire central pro-
cessing unit, thereby giving rise not only to supercomputers capable of carrying
out 80—250 million operations per second but to the microcomputer and to the
creation in the 1980s of a consumer market for computers and a return to the
single-user system.

550

CYBERNETICS AND INFORMATION TECHNOLOGY

4. FROM CYBERNETICS TO COMPUTATION:
ARTIFICIAL INTELLIGENCE

The increasing power and accessibility of computers ironically reinforced the
autonomous tendencies of fields Wiener had envisioned united by cybernetics.
By making feasible techniques like linear programming using George Dantzig’s
simplex method (1947), computers directed such fields as operations research
and management science away from traditional applied mathematics and
toward new methods of modelling and simulation using discrete mathematics,
thus triggering new developments in that area while appropriating a major seg-
ment of Wiener’s agenda. Interactively adapting to the computer, each disci-
pline designed applications that best suited its own needs and in turn shaped its
research to take advantage of what the device could do.

That turned out to be particulary true for the agenda perhaps closest to
Wiener’s heart: the computer as a model of the human nervous system and
hence of human thought. Here, cybernetics’ initially suggestive concepts of
negative feedback, pattern recognition and stochastic learning proved unfruit-
ful, as did efforts to emulate human perception by modelling neural struc-
tures.'3 Yet, by suggesting and supporting a representational approach to the
meaning of ‘control and communication’ in the realm of human thought, that is
as a tool for modelling rather than as a model itself, the computer became the
foundation of the new field of artificial intelligence. (See art. 11.)

From the beginning, Turing viewed the computer as a manipulator of sym-
bols and hence as capable of emulating any behaviour representable symboli-
cally, in particular, game playing and similar manifestations of human
intelligence. Turing machines, no less than Boole’s algebra of logic, were meant
to embody the laws of thought and hence to express human thinking. His
design of the ACE reflected that intent, as did his early efforts to write a chess
program and his espousal of machine intelligence. By contrast, von Neumann
originally thought of the computer as a tool for the large-scale, high-speed cal-
culations necessary for solving non-linear systems of equations and the basic
architecture that bears his name likewise reflected this view, as did most pro-
gramming languages with their focus on functions and procedures, even in the
realm of data processing.

While scientific calculation and business data processing dominated the field
of computing during its first decades, Turing’s vision had its American adher-
ents. In the early 1950s Shannon, impressed by chess-playing programs, took
up the question of logical automata capable of self-directed behaviour. His col-
leagues at MIT included Marvin Minsky, then engaged in modelling neural
networks on the computer in an effort to emulate perception and John
McCarthy, working on a formal logic of human thought. Elsewhere, attracted to
the computer as a tool of rational decision-analysis in management, Herbert

551

TURNING POINTS

Simon teamed in the early 1950s with Allen Newell and J.C. Shaw to explore
the heuristic capabilities of information processing. A ‘Logical Theorist’ pro-
gram capable of finding and proving mathematical theorems led to the design of
a ‘General Problem Solver’. These first efforts came together in 1956 at a con-
ference at Dartmouth College on ‘artificial intelligence’ (AI).

Despite the common designation, artificial intelligence encompassed from
the outset a range of methods and agendas of research, diverse views concern-
ing its short-range and long-term goals and changing relations with other disci-
plines such as psychology, neurophysiology and linguistics. Its (yet unwritten)
history is correspondingly tangled and unclear, but one abiding feature has
been the common emphasis on working programs as the embodiment of
theory.'4 Main lines of investigation in the United States, Europe and Japan
have included goal-directed planning, learning, understanding of natural
language both syntactically and semantically, analysis and understanding of
visual images, the organisation of knowledge about the world, the production of
knowledge, and the emulation of expert problem-solving based on detailed
knowledge in specific domains.'> This last area, which emerged in the mid-
1970s with programs capable of analysing molecular structure, diagnosing dis-
eases and designing computer circuits, represented a new orientation of the
field towards empirically-based systems aimed at assisting humans in solving
problems of immediate practical significance. With expert systems, artifical
intelligence moved into the market-place.

Although largely independent of mainstream computer science until the
1980s, Al spun off several major contributions to computing in general, for
example time-sharing, techniques of graphical simulation, interactive debug-
ging and computer design of VSLI circuits. In turn, its development by the end
of the 1970s made it clear to many that application of such data-intensive strate-
gies to more general realms of human thought lay beyond the limits of von Neu-
mann architecture, as did significant progress on the earlier goals reached.
Computers that can understand spoken and written speech, that can translate
common language into programs and that can learn from their own experience,
it was argued, require a ‘Fifth Generation’ of computer hardware and software.
In the early 1980s Japan made the development of such computers a national
goal, while several private ventures got underway in the United States. The out-
come remains at present undecided.

NOTES

1. From the Greek kybemnetes for ‘steersman’ (= Latin gubernator); often credited to Wiener, the
neologism stemmed from Ampére’s Philosophie des sciences (Paris, 1838), where it denoted a
subdiscipline of the study of government.

2. Wiener, Cybemnetics (2nd ed., Cambridge, Mass., 1961), p. 14, p. 26.

3. Shannon, in Claude E. Shannon and Warren Weaver, The mathematical theory of communication,

552

CYBERNETICS AND INFORMATION TECHNOLOGY

II.
12,

14.

15.

(Urbana, IL., 1949), p. 39; Shannon’s paper originally appeared in the Bell system technical jour-
nal, 27 (1948), 379-423; 623—56.

. Cf. Richard W. Hamming, ‘Error detecting and error correcting codes’, Bell system technical

Journal, 29 (1950), 147-60.

. Cf. Donald M. MacKay, ‘The wider scope of information theory’, in Machlup and Mansfeld,

The study of information (New York, 1984) pp. 485-92; esp. pp. 486—7.

. Cf. Peter Elias, ‘Cybernetics: past and present, east and west’, in Machlup and Mansfield, The

study of information, pp. 441—4; see especially p. 442.

. As in Simon Nora and Alain Minc’s L Informatisation de la société (Paris, 1978), translated into

English under the title The computerisation of society (Cambridge, Mass., 1981). To characterise
the unprecedented capabilities of computers linked to telecommunications, Nora and Minc
coined the term téléematique.

. Meanwhile in Germany between 1934 and 1945 Konrad Zuse independenty and single-

handedly recapitulated the development from mechanical calculator through relay machine to
electronic, stored-program device in his computers Z1—Z4. The last of these formed the basis
for the early computing program at Zurich’s ETH.

. Proc. Lond. Math. Soc., series 2, 42 (1936), 230-65.
. Cf. Wiener, Cybernetics (1961), p. 12: ‘If I were to choose a patron saint for cybernetics out of

the history of science, I should have to choose Leibniz. The philosophy of Leibniz centers
about two closely related concepts — that of a universal symbolism and that of a calculus of
reasoning.’

Turing, ‘On computable numbers’, p. 259.

SAGE = Semi-Automatic Ground Environment. The computer was an outgrowth of the mas-
sive Whirlwind computer built by Jay Forrester at MIT in the late 1940s.

. Marvin L. Minsky, ‘Computer science and the representation of knowledge’, in Michael L.

Dertouzos and Joel Moses (eds.), The computer age: a twenty-year view (Cambridge, Mass.,
1979), Pp- 392—421; esp. pp. 401-2. Recent developments in parallel distributed processing
(PDP) have revived research in neural networks, overriding some of Minsky’s conclusions.
Allen Newell has made a stimulating attempt to sort out the main lines in ‘Intellectual issues in
the history of artifical intelligence’, in Machlup and Mansfeld, The study of information,
pp. 187-227.

While the agendas of Al in the United States and elsewhere have looked much the same, the
research communities differ on the question of language. Lingua franca for Americans is John
McCarthy’s LISP (for LISt Processing), an outgrowth of his work on the mathematical founda-
tions of thought which was better suited than procedural languages to expressing the patterns
of inference and search that researchers were investigating. During the 1970s European and
Japanese investigators turned increasingly to PROLOG (Colmerauer and Roussel, 1972),
aimed at facilitating the development of programs based on logical relations.

FURTHER READING

S.]. Heims, John von Neumann and Norbert Wiener (Cambridge, Mass., 1980).
Andrew Hodges, Alan Turing: the enigma of intelligence (London, 1983).
Vernon Pratt, Thinking machines. The evolution of artificial intelligence (Oxford, 1987)

553

